Spaces:
Sleeping
Sleeping
import gradio as gr | |
def load_model(model_link): | |
return "model" | |
def update_config(quantization_type, bits, threshold): | |
# Configuration logic here | |
return {"quantization": quantization_type, "bits": bits, "threshold": threshold} | |
def run_benchmark(model, config): | |
# Benchmarking logic here | |
return {"speed": "X ms/token", "memory": "Y GB"} | |
# Create the interface | |
with gr.Blocks() as demo: | |
with gr.Tab("Model Loading"): | |
model_input = gr.Textbox(label="Hugging Face Model Link") | |
model_type = gr.Dropdown(choices=["LLM", "CV", "MLP"], label="Model Type") | |
model = gr.Dropdown(choices=["BERT", "GPT", "T5"], label="Model") | |
load_btn = gr.Button("Load Model") | |
with gr.Tab("Quantization"): | |
quant_type = gr.Dropdown(choices=["awg", "gptq", "4bit"], label="Quantization Type") | |
bits = gr.Slider(minimum=4, maximum=8, step=1, label="Bits") | |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold") | |
with gr.Tab("Benchmarking"): | |
data_input = gr.Textbox(label="Hugging Face data Input") | |
benchmark_btn = gr.Button("Run Benchmark") | |
results = gr.JSON(label="Benchmark Results") | |
# Set up event handlers | |
load_btn.click(load_model, inputs=[model_input]) | |
benchmark_btn.click( | |
run_benchmark, | |
inputs=[model_type, quant_type, bits, threshold], | |
outputs=[results] | |
) | |
demo.launch() | |