sam2ai commited on
Commit
1846146
·
verified ·
1 Parent(s): 3dcd42b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -1,9 +1,7 @@
1
  import gradio as gr
2
- # import torch
3
- # from transformers import AutoModel, AutoTokenizer
4
 
5
  def load_model(model_link):
6
- # model = AutoModel.from_pretrained(model_link)
7
  return "model"
8
 
9
  def update_config(quantization_type, bits, threshold):
@@ -18,15 +16,17 @@ def run_benchmark(model, config):
18
  with gr.Blocks() as demo:
19
  with gr.Tab("Model Loading"):
20
  model_input = gr.Textbox(label="Hugging Face Model Link")
21
- model_type = gr.Dropdown(choices=["BERT", "GPT", "T5"], label="Model Type")
 
22
  load_btn = gr.Button("Load Model")
23
 
24
  with gr.Tab("Quantization"):
25
- quant_type = gr.Dropdown(choices=["INT8", "INT4", "FP16"], label="Quantization Type")
26
  bits = gr.Slider(minimum=4, maximum=8, step=1, label="Bits")
27
  threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
28
 
29
  with gr.Tab("Benchmarking"):
 
30
  benchmark_btn = gr.Button("Run Benchmark")
31
  results = gr.JSON(label="Benchmark Results")
32
 
 
1
  import gradio as gr
2
+
 
3
 
4
  def load_model(model_link):
 
5
  return "model"
6
 
7
  def update_config(quantization_type, bits, threshold):
 
16
  with gr.Blocks() as demo:
17
  with gr.Tab("Model Loading"):
18
  model_input = gr.Textbox(label="Hugging Face Model Link")
19
+ model_type = gr.Dropdown(choices=["LLM", "CV", "MLP"], label="Model Type")
20
+ model = gr.Dropdown(choices=["BERT", "GPT", "T5"], label="Model")
21
  load_btn = gr.Button("Load Model")
22
 
23
  with gr.Tab("Quantization"):
24
+ quant_type = gr.Dropdown(choices=["awg", "gptq", "4bit"], label="Quantization Type")
25
  bits = gr.Slider(minimum=4, maximum=8, step=1, label="Bits")
26
  threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
27
 
28
  with gr.Tab("Benchmarking"):
29
+ data_input = gr.Textbox(label="Hugging Face data Input")
30
  benchmark_btn = gr.Button("Run Benchmark")
31
  results = gr.JSON(label="Benchmark Results")
32