sagawa's picture
Update app.py
aa903dc
raw
history blame
2.42 kB
import os
import gc
import random
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import torch
import tokenizers
import transformers
from transformers import AutoTokenizer, EncoderDecoderModel, AutoModelForSeq2SeqLM
import sentencepiece
from rdkit import Chem
import rdkit
import streamlit as st
class CFG():
input_data = st.text_area('enter chemical reaction (e.g. REACTANT:CNc1nc(SC)ncc1CO.O.O=[Cr](=O)([O-])O[Cr](=O)(=O)[O-].[Na+]CATALYST: REAGENT: SOLVENT:CC(=O)O)')
model_name_or_path = 'sagawa/ZINC-t5-productpredicition'
model = 't5'
num_beams = 5
num_return_sequences = 5
seed = 42
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_everything(seed=CFG.seed)
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
if CFG.model == 't5':
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
elif CFG.model == 'deberta':
model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)
input_compound = CFG.input_data
min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
inp = tokenizer(input_compound, return_tensors='pt').to(device)
output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
scores = output['sequences_scores'].tolist()
output = [tokenizer.decode(i, skip_special_tokens=True).replace('. ', '.').rstrip('.') for i in output['sequences']]
for ith, out in enumerate(output):
mol = Chem.MolFromSmiles(out.rstrip('.'))
if type(mol) == rdkit.Chem.rdchem.Mol:
output.append(out.rstrip('.'))
scores.append(scores[ith])
break
if type(mol) == None:
output.append(None)
scores.append(None)
output += scores
output = [input_compound] + output
output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
st.table(output_df)