File size: 2,419 Bytes
2548c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa903dc
554cc90
2548c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83527e
6e92bdc
 
 
 
 
 
5d320ee
2548c76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d320ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import gc
import random
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
import torch
import tokenizers
import transformers
from transformers import AutoTokenizer, EncoderDecoderModel, AutoModelForSeq2SeqLM
import sentencepiece
from rdkit import Chem
import rdkit
import streamlit as st

class CFG():
    input_data = st.text_area('enter chemical reaction (e.g. REACTANT:CNc1nc(SC)ncc1CO.O.O=[Cr](=O)([O-])O[Cr](=O)(=O)[O-].[Na+]CATALYST: REAGENT: SOLVENT:CC(=O)O)')
    model_name_or_path = 'sagawa/ZINC-t5-productpredicition'
    model = 't5'
    num_beams = 5
    num_return_sequences = 5
    seed = 42


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def seed_everything(seed=42):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
seed_everything(seed=CFG.seed) 


tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
    
if CFG.model == 't5':
    model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
elif CFG.model == 'deberta':
    model = EncoderDecoderModel.from_pretrained(CFG.model_name_or_path).to(device)

input_compound = CFG.input_data
min_length = min(input_compound.find('CATALYST') - input_compound.find(':') - 10, 0)
inp = tokenizer(input_compound, return_tensors='pt').to(device)
output = model.generate(**inp, min_length=min_length, max_length=min_length+50, num_beams=CFG.num_beams, num_return_sequences=CFG.num_return_sequences, return_dict_in_generate=True, output_scores=True)
scores = output['sequences_scores'].tolist()
output = [tokenizer.decode(i, skip_special_tokens=True).replace('. ', '.').rstrip('.') for i in output['sequences']]
for ith, out in enumerate(output):
    mol = Chem.MolFromSmiles(out.rstrip('.'))
    if type(mol) == rdkit.Chem.rdchem.Mol:
        output.append(out.rstrip('.'))
        scores.append(scores[ith])
        break
if type(mol) == None:
    output.append(None)
    scores.append(None)
output += scores
output = [input_compound] + output
output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
st.table(output_df)