File size: 6,553 Bytes
ffb15d8 cb33707 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 10c3cd8 559f880 cb33707 10c3cd8 cb33707 87724a0 cfb69be cb33707 87724a0 cb33707 cfb69be 87724a0 cfb69be cb33707 87724a0 17fc1a7 87724a0 ffb15d8 17fc1a7 ffb15d8 17fc1a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import torch
from PIL import Image
import os
import yolov9
HTML_TEMPLATE = """
<style>
body {
background: linear-gradient(135deg, #1a2a6c, #b21f1f, #fdbb2d);
font-family: 'Roboto', sans-serif;
color: #ecf0f1;
min-height: 100vh;
}
#app-header {
text-align: center;
background: rgba(26, 42, 108, 0.8);
padding: 40px;
border-radius: 20px;
box-shadow: 0 15px 30px rgba(0, 0, 0, 0.4);
position: relative;
overflow: hidden;
margin-bottom: 40px;
backdrop-filter: blur(10px);
}
#app-header::before {
content: "";
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(253,187,45,0.2) 0%, rgba(253,187,45,0) 70%);
animation: shimmer 20s infinite linear;
}
@keyframes shimmer {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
#app-header h1 {
color: #fdbb2d;
font-size: 3em;
margin-bottom: 20px;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
#app-header p {
font-size: 1.3em;
color: #ecf0f1;
}
.feature-container {
display: flex;
justify-content: center;
gap: 40px;
margin-top: 40px;
flex-wrap: wrap;
}
.feature {
position: relative;
transition: all 0.4s ease;
border-radius: 15px;
overflow: hidden;
background: rgba(178, 31, 31, 0.7);
box-shadow: 0 8px 20px rgba(0,0,0,0.3);
width: 180px;
height: 180px;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
.feature:hover {
transform: translateY(-15px) rotate(5deg) scale(1.05);
box-shadow: 0 20px 40px rgba(0,0,0,0.4);
background: rgba(253, 187, 45, 0.8);
}
.feature-icon {
font-size: 4em;
color: #ecf0f1;
margin-bottom: 15px;
transition: all 0.4s ease;
}
.feature:hover .feature-icon {
transform: scale(1.2);
}
.feature-description {
color: #ecf0f1;
font-size: 1em;
text-align: center;
padding: 0 10px;
transition: all 0.4s ease;
}
.feature:hover .feature-description {
font-weight: bold;
}
.artifact {
position: absolute;
background: radial-gradient(circle, rgba(253,187,45,0.3) 0%, rgba(253,187,45,0) 70%);
border-radius: 50%;
opacity: 0.5;
filter: blur(40px);
}
.artifact.large {
width: 600px;
height: 600px;
top: -200px;
left: -300px;
animation: float 30s infinite ease-in-out;
}
.artifact.medium {
width: 400px;
height: 400px;
bottom: -200px;
right: -200px;
animation: float 25s infinite ease-in-out reverse;
}
.artifact.small {
width: 200px;
height: 200px;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
animation: pulse 8s infinite alternate;
}
@keyframes float {
0%, 100% { transform: translateY(0) rotate(0deg); }
50% { transform: translateY(-30px) rotate(15deg); }
}
@keyframes pulse {
0% { transform: scale(1) translate(-50%, -50%); opacity: 0.5; }
100% { transform: scale(1.2) translate(-50%, -50%); opacity: 0.8; }
}
</style>
<div id="app-header">
<div class="artifact large"></div>
<div class="artifact medium"></div>
<div class="artifact small"></div>
<h1>YOLOv9: Manhole Detector</h1>
<p>Unleash the power of AI to detect manholes with precision</p>
<div class="feature-container">
<div class="feature">
<div class="feature-icon">🎯</div>
<div class="feature-description">High Precision Detection</div>
</div>
<div class="feature">
<div class="feature-icon">⚡</div>
<div class="feature-description">Lightning-Fast Processing</div>
</div>
<div class="feature">
<div class="feature-icon">🖼️</div>
<div class="feature-description">Dynamic Image Resizing</div>
</div>
<div class="feature">
<div class="feature-icon">🔧</div>
<div class="feature-description">Fine-Tuned Thresholds</div>
</div>
</div>
</div>
"""
# The rest of the Python code remains the same
def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
model = yolov9.load('./best.pt') # Load your trained model
model.conf = conf_threshold
model.iou = iou_threshold
results = model(img_path, size=image_size)
output = results.render()
return output[0]
def app():
with gr.Blocks(theme=gr.themes.Soft()) as demo: # Added a theme here
gr.HTML(HTML_TEMPLATE)
with gr.Row():
with gr.Column(scale=1, min_width=300):
img_path = gr.Image(type="filepath", label="Upload Image")
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
detect_button = gr.Button("Detect Manholes", variant="primary")
with gr.Column(scale=1, min_width=300):
output_numpy = gr.Image(type="numpy", label="Detection Result")
detect_button.click(
fn=yolov9_inference,
inputs=[img_path, image_size, conf_threshold, iou_threshold],
outputs=[output_numpy]
)
gr.Examples(
examples=[
["./openmanhole.jpg", 640, 0.4, 0.5], # Add your example images
["./images.jpeg", 640, 0.4, 0.5], # Add your example images
],
fn=yolov9_inference,
inputs=[img_path, image_size, conf_threshold, iou_threshold],
outputs=[output_numpy],
cache_examples=True,
)
return demo
# Removed the separate CSS variable and added theme to gr.Blocks
demo = gr.Blocks() # Moved the theme application here
with demo:
app()
if __name__ == "__main__":
demo.launch(debug=True, share=True) |