Update app.py
Browse files
app.py
CHANGED
@@ -20,27 +20,20 @@ def yolov9_inference(img_path, image_size, conf_threshold, iou_threshold):
|
|
20 |
|
21 |
def app():
|
22 |
with gr.Blocks() as demo:
|
23 |
-
gr.HTML(
|
24 |
-
|
25 |
-
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
26 |
-
<h1 style="color: #2c3e50; font-size: 2.5em; margin-bottom: 0.5em;">YOLOv9: Manhole Detector</h1>
|
27 |
-
<p style="color: #34495e; font-size: 1.2em; margin-bottom: 1em;">Detect manholes in images using YOLOv9</p>
|
28 |
-
</div>
|
29 |
-
"""
|
30 |
-
)
|
31 |
with gr.Row():
|
32 |
with gr.Column(scale=1, min_width=300):
|
33 |
img_path = gr.Image(type="filepath", label="Upload Image")
|
34 |
-
gr.Markdown("### Model Parameters")
|
35 |
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
36 |
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
37 |
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
38 |
-
|
39 |
|
40 |
with gr.Column(scale=1, min_width=300):
|
41 |
output_numpy = gr.Image(type="numpy", label="Detection Result")
|
42 |
|
43 |
-
|
44 |
fn=yolov9_inference,
|
45 |
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
46 |
outputs=[output_numpy]
|
@@ -58,33 +51,140 @@ def app():
|
|
58 |
)
|
59 |
|
60 |
return demo
|
61 |
-
|
62 |
css = """
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
}
|
89 |
"""
|
90 |
|
|
|
20 |
|
21 |
def app():
|
22 |
with gr.Blocks() as demo:
|
23 |
+
gr.HTML(HTML_TEMPLATE)
|
24 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with gr.Row():
|
26 |
with gr.Column(scale=1, min_width=300):
|
27 |
img_path = gr.Image(type="filepath", label="Upload Image")
|
|
|
28 |
image_size = gr.Slider(label="Image Size", minimum=320, maximum=1280, step=32, value=640)
|
29 |
conf_threshold = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.4)
|
30 |
iou_threshold = gr.Slider(label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.5)
|
31 |
+
detect_button = gr.Button("Detect Manholes", variant="primary")
|
32 |
|
33 |
with gr.Column(scale=1, min_width=300):
|
34 |
output_numpy = gr.Image(type="numpy", label="Detection Result")
|
35 |
|
36 |
+
detect_button.click(
|
37 |
fn=yolov9_inference,
|
38 |
inputs=[img_path, image_size, conf_threshold, iou_threshold],
|
39 |
outputs=[output_numpy]
|
|
|
51 |
)
|
52 |
|
53 |
return demo
|
|
|
54 |
css = """
|
55 |
+
<style>
|
56 |
+
body {
|
57 |
+
background: linear-gradient(135deg, #2c3e50, #34495e, #95a5a6);
|
58 |
+
font-family: 'Arial', sans-serif;
|
59 |
+
color: #ecf0f1;
|
60 |
+
}
|
61 |
+
#app-header {
|
62 |
+
text-align: center;
|
63 |
+
background: rgba(52, 73, 94, 0.9);
|
64 |
+
padding: 30px;
|
65 |
+
border-radius: 20px;
|
66 |
+
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.3);
|
67 |
+
position: relative;
|
68 |
+
overflow: hidden;
|
69 |
+
margin-bottom: 30px;
|
70 |
+
}
|
71 |
+
#app-header::before {
|
72 |
+
content: "";
|
73 |
+
position: absolute;
|
74 |
+
top: -50%;
|
75 |
+
left: -50%;
|
76 |
+
width: 200%;
|
77 |
+
height: 200%;
|
78 |
+
background: radial-gradient(circle, rgba(236,240,241,0.3) 0%, rgba(236,240,241,0) 70%);
|
79 |
+
animation: shimmer 15s infinite linear;
|
80 |
+
}
|
81 |
+
@keyframes shimmer {
|
82 |
+
0% { transform: rotate(0deg); }
|
83 |
+
100% { transform: rotate(360deg); }
|
84 |
+
}
|
85 |
+
#app-header h1 {
|
86 |
+
color: #e74c3c;
|
87 |
+
font-size: 2.5em;
|
88 |
+
margin-bottom: 15px;
|
89 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.2);
|
90 |
+
}
|
91 |
+
#app-header p {
|
92 |
+
font-size: 1.2em;
|
93 |
+
color: #bdc3c7;
|
94 |
+
}
|
95 |
+
.feature-container {
|
96 |
+
display: flex;
|
97 |
+
justify-content: center;
|
98 |
+
gap: 30px;
|
99 |
+
margin-top: 30px;
|
100 |
+
flex-wrap: wrap;
|
101 |
+
}
|
102 |
+
.feature {
|
103 |
+
position: relative;
|
104 |
+
transition: transform 0.3s, box-shadow 0.3s;
|
105 |
+
border-radius: 15px;
|
106 |
+
overflow: hidden;
|
107 |
+
background: #2c3e50;
|
108 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.2);
|
109 |
+
}
|
110 |
+
.feature:hover {
|
111 |
+
transform: translateY(-10px) rotate(2deg);
|
112 |
+
box-shadow: 0 15px 30px rgba(0,0,0,0.3);
|
113 |
+
}
|
114 |
+
.feature-icon {
|
115 |
+
font-size: 3em;
|
116 |
+
padding: 20px;
|
117 |
+
color: #e74c3c;
|
118 |
+
}
|
119 |
+
.feature-description {
|
120 |
+
background-color: #34495e;
|
121 |
+
color: #ecf0f1;
|
122 |
+
padding: 10px;
|
123 |
+
font-size: 0.9em;
|
124 |
+
text-align: center;
|
125 |
+
}
|
126 |
+
.artifact {
|
127 |
+
position: absolute;
|
128 |
+
background: radial-gradient(circle, rgba(231,76,60,0.3) 0%, rgba(231,76,60,0) 70%);
|
129 |
+
border-radius: 50%;
|
130 |
+
opacity: 0.5;
|
131 |
+
}
|
132 |
+
.artifact.large {
|
133 |
+
width: 400px;
|
134 |
+
height: 400px;
|
135 |
+
top: -100px;
|
136 |
+
left: -200px;
|
137 |
+
animation: float 20s infinite ease-in-out;
|
138 |
+
}
|
139 |
+
.artifact.medium {
|
140 |
+
width: 300px;
|
141 |
+
height: 300px;
|
142 |
+
bottom: -150px;
|
143 |
+
right: -150px;
|
144 |
+
animation: float 15s infinite ease-in-out reverse;
|
145 |
+
}
|
146 |
+
.artifact.small {
|
147 |
+
width: 150px;
|
148 |
+
height: 150px;
|
149 |
+
top: 50%;
|
150 |
+
left: 50%;
|
151 |
+
transform: translate(-50%, -50%);
|
152 |
+
animation: pulse 5s infinite alternate;
|
153 |
+
}
|
154 |
+
@keyframes float {
|
155 |
+
0%, 100% { transform: translateY(0) rotate(0deg); }
|
156 |
+
50% { transform: translateY(-20px) rotate(10deg); }
|
157 |
+
}
|
158 |
+
@keyframes pulse {
|
159 |
+
0% { transform: scale(1); opacity: 0.5; }
|
160 |
+
100% { transform: scale(1.1); opacity: 0.8; }
|
161 |
+
}
|
162 |
+
</style>
|
163 |
+
<div id="app-header">
|
164 |
+
<div class="artifact large"></div>
|
165 |
+
<div class="artifact medium"></div>
|
166 |
+
<div class="artifact small"></div>
|
167 |
+
<h1>YOLOv9: Manhole Detector</h1>
|
168 |
+
<p>Detect manholes in images with advanced AI technology</p>
|
169 |
+
<div class="feature-container">
|
170 |
+
<div class="feature">
|
171 |
+
<div class="feature-icon">🔍</div>
|
172 |
+
<div class="feature-description">High Accuracy Detection</div>
|
173 |
+
</div>
|
174 |
+
<div class="feature">
|
175 |
+
<div class="feature-icon">⚡</div>
|
176 |
+
<div class="feature-description">Fast Processing</div>
|
177 |
+
</div>
|
178 |
+
<div class="feature">
|
179 |
+
<div class="feature-icon">🖼️</div>
|
180 |
+
<div class="feature-description">Image Size Adjustment</div>
|
181 |
+
</div>
|
182 |
+
<div class="feature">
|
183 |
+
<div class="feature-icon">🎚️</div>
|
184 |
+
<div class="feature-description">Customizable Thresholds</div>
|
185 |
+
</div>
|
186 |
+
</div>
|
187 |
+
</div>
|
188 |
}
|
189 |
"""
|
190 |
|