|
import gradio as gr |
|
import spaces |
|
from gradio_litmodel3d import LitModel3D |
|
import io |
|
import os |
|
import os |
|
os.environ["OMP_NUM_THREADS"] = "3500" |
|
|
|
|
|
import shutil |
|
os.environ['SPCONV_ALGO'] = 'native' |
|
from typing import * |
|
import torch |
|
import numpy as np |
|
import imageio |
|
from easydict import EasyDict as edict |
|
from PIL import Image |
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
from trellis.representations import Gaussian, MeshExtractResult |
|
from trellis.utils import render_utils, postprocessing_utils |
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') |
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
|
|
|
|
|
|
def start_session(req: gr.Request): |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
os.makedirs(user_dir, exist_ok=True) |
|
|
|
|
|
def end_session(req: gr.Request): |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
shutil.rmtree(user_dir) |
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Image.Image: |
|
""" |
|
Preprocess the input image. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
|
|
Returns: |
|
Image.Image: The preprocessed image. |
|
""" |
|
processed_image = pipeline.preprocess_image(image) |
|
return processed_image |
|
|
|
|
|
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: |
|
""" |
|
Preprocess a list of input images. |
|
|
|
Args: |
|
images (List[Tuple[Image.Image, str]]): The input images. |
|
|
|
Returns: |
|
List[Image.Image]: The preprocessed images. |
|
""" |
|
images = [image[0] for image in images] |
|
processed_images = [pipeline.preprocess_image(image) for image in images] |
|
return processed_images |
|
|
|
|
|
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: |
|
return { |
|
'gaussian': { |
|
**gs.init_params, |
|
'_xyz': gs._xyz.cpu().numpy(), |
|
'_features_dc': gs._features_dc.cpu().numpy(), |
|
'_scaling': gs._scaling.cpu().numpy(), |
|
'_rotation': gs._rotation.cpu().numpy(), |
|
'_opacity': gs._opacity.cpu().numpy(), |
|
}, |
|
'mesh': { |
|
'vertices': mesh.vertices.cpu().numpy(), |
|
'faces': mesh.faces.cpu().numpy(), |
|
}, |
|
} |
|
|
|
|
|
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]: |
|
gs = Gaussian( |
|
aabb=state['gaussian']['aabb'], |
|
sh_degree=state['gaussian']['sh_degree'], |
|
mininum_kernel_size=state['gaussian']['mininum_kernel_size'], |
|
scaling_bias=state['gaussian']['scaling_bias'], |
|
opacity_bias=state['gaussian']['opacity_bias'], |
|
scaling_activation=state['gaussian']['scaling_activation'], |
|
) |
|
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda') |
|
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda') |
|
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda') |
|
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda') |
|
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda') |
|
|
|
mesh = edict( |
|
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'), |
|
faces=torch.tensor(state['mesh']['faces'], device='cuda'), |
|
) |
|
|
|
return gs, mesh |
|
|
|
|
|
def get_seed(randomize_seed: bool, seed: int) -> int: |
|
""" |
|
Get the random seed. |
|
""" |
|
return np.random.randint(0, MAX_SEED) if randomize_seed else seed |
|
|
|
|
|
@spaces.GPU |
|
def image_to_3d( |
|
image: Image.Image, |
|
multiimages: List[Tuple[Image.Image, str]], |
|
is_multiimage: bool, |
|
seed: int, |
|
ss_guidance_strength: float, |
|
ss_sampling_steps: int, |
|
slat_guidance_strength: float, |
|
slat_sampling_steps: int, |
|
multiimage_algo: Literal["multidiffusion", "stochastic"], |
|
req: gr.Request, |
|
) -> Tuple[dict, str]: |
|
""" |
|
Convert an image to a 3D model. |
|
|
|
Args: |
|
image (Image.Image): The input image. |
|
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. |
|
is_multiimage (bool): Whether is in multi-image mode. |
|
seed (int): The random seed. |
|
ss_guidance_strength (float): The guidance strength for sparse structure generation. |
|
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. |
|
slat_guidance_strength (float): The guidance strength for structured latent generation. |
|
slat_sampling_steps (int): The number of sampling steps for structured latent generation. |
|
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. |
|
|
|
Returns: |
|
dict: The information of the generated 3D model. |
|
str: The path to the video of the 3D model. |
|
""" |
|
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
if not is_multiimage: |
|
outputs = pipeline.run( |
|
image, |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
) |
|
else: |
|
outputs = pipeline.run_multi_image( |
|
[image[0] for image in multiimages], |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
mode=multiimage_algo, |
|
) |
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] |
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] |
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] |
|
video_path = os.path.join(user_dir, 'sample.mp4') |
|
imageio.mimsave(video_path, video, fps=15) |
|
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) |
|
torch.cuda.empty_cache() |
|
return state, video_path |
|
|
|
|
|
@spaces.GPU |
|
def image_to_3d2( |
|
image: Image.Image, |
|
seed: int, |
|
ss_guidance_strength: float, |
|
ss_sampling_steps: int, |
|
slat_guidance_strength: float, |
|
slat_sampling_steps: int, |
|
) -> Tuple[dict, str]: |
|
|
|
outputs = pipeline.run( |
|
image, |
|
seed=seed, |
|
formats=["gaussian", "mesh"], |
|
preprocess_image=False, |
|
sparse_structure_sampler_params={ |
|
"steps": ss_sampling_steps, |
|
"cfg_strength": ss_guidance_strength, |
|
}, |
|
slat_sampler_params={ |
|
"steps": slat_sampling_steps, |
|
"cfg_strength": slat_guidance_strength, |
|
}, |
|
) |
|
|
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] |
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] |
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video: |
|
video_path = temp_video.name |
|
imageio.mimsave(video_path, video, fps=15) |
|
|
|
torch.cuda.empty_cache() |
|
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0]) |
|
return state, video_path |
|
|
|
import random |
|
@spaces.GPU(duration=90) |
|
def extract_glb( |
|
state: dict, |
|
mesh_simplify: float, |
|
texture_size: int, |
|
req: gr.Request, |
|
) -> Tuple[str, str]: |
|
""" |
|
Extract a GLB file from the 3D model. |
|
|
|
Args: |
|
state (dict): The state of the generated 3D model. |
|
mesh_simplify (float): The mesh simplification factor. |
|
texture_size (int): The texture resolution. |
|
|
|
Returns: |
|
str: The path to the extracted GLB file. |
|
""" |
|
user_dir = TMP_DIR |
|
gs, mesh = unpack_state(state) |
|
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) |
|
glb_path = os.path.join(user_dir, f"test_{random.random()}.glb") |
|
|
|
glb.export(glb_path) |
|
torch.cuda.empty_cache() |
|
return glb_path, glb_path |
|
|
|
|
|
@spaces.GPU |
|
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]: |
|
""" |
|
Extract a Gaussian file from the 3D model. |
|
|
|
Args: |
|
state (dict): The state of the generated 3D model. |
|
|
|
Returns: |
|
str: The path to the extracted Gaussian file. |
|
""" |
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
gs, _ = unpack_state(state) |
|
gaussian_path = os.path.join(user_dir, 'sample.ply') |
|
gs.save_ply(gaussian_path) |
|
torch.cuda.empty_cache() |
|
return gaussian_path, gaussian_path |
|
|
|
|
|
def prepare_multi_example() -> List[Image.Image]: |
|
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")])) |
|
images = [] |
|
for case in multi_case: |
|
_images = [] |
|
for i in range(1, 4): |
|
img = Image.open(f'assets/example_multi_image/{case}_{i}.png') |
|
W, H = img.size |
|
img = img.resize((int(W / H * 512), 512)) |
|
_images.append(np.array(img)) |
|
images.append(Image.fromarray(np.concatenate(_images, axis=1))) |
|
return images |
|
|
|
|
|
def split_image(image: Image.Image) -> List[Image.Image]: |
|
""" |
|
Split an image into multiple views. |
|
""" |
|
image = np.array(image) |
|
alpha = image[..., 3] |
|
alpha = np.any(alpha>0, axis=0) |
|
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist() |
|
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist() |
|
images = [] |
|
for s, e in zip(start_pos, end_pos): |
|
images.append(Image.fromarray(image[:, s:e+1])) |
|
return [preprocess_image(image) for image in images] |
|
|
|
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, Header, Response |
|
from fastapi.responses import JSONResponse, FileResponse, StreamingResponse |
|
import tempfile |
|
import os |
|
|
|
app = FastAPI() |
|
|
|
def verify_token(authorization: str = Header(...)): |
|
if not authorization.startswith("Bearer "): |
|
raise HTTPException(status_code=403, detail="Invalid or missing token") |
|
|
|
token = authorization.split("Bearer ")[1] |
|
if token != os.getenv("AUTH_TOKEN"): |
|
raise HTTPException(status_code=403, detail="Invalid or missing token") |
|
|
|
@app.post("/generate") |
|
async def generate_3d(image: UploadFile = File(...), token: str = Depends(verify_token)): |
|
if not image: |
|
raise HTTPException(status_code=400, detail="No image provided") |
|
|
|
try: |
|
image_data = Image.open(image.file) |
|
image_data = image_data.convert("RGBA") |
|
image_data = preprocess_image(image_data) |
|
|
|
seed = 42 |
|
ss_guidance_strength = 7.5 |
|
ss_sampling_steps = 12 |
|
slat_guidance_strength = 3.0 |
|
slat_sampling_steps = 12 |
|
|
|
state, _ = image_to_3d2( |
|
image_data, |
|
seed=seed, |
|
ss_guidance_strength=ss_guidance_strength, |
|
ss_sampling_steps=ss_sampling_steps, |
|
slat_guidance_strength=slat_guidance_strength, |
|
slat_sampling_steps=slat_sampling_steps, |
|
) |
|
mesh_simplify = 0.95 |
|
texture_size = 1024 |
|
glb_path, _ = extract_glb( |
|
state=state, |
|
mesh_simplify=mesh_simplify, |
|
texture_size=texture_size, |
|
req=None |
|
) |
|
return FileResponse(glb_path, media_type='application/octet-stream', filename='model.glb') |
|
|
|
except Exception as e: |
|
print("ERROR IN GENERATING 3D FILE : " , e) |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/remove-image-background") |
|
async def remove_image_background(image: UploadFile = File(...), token: str = Depends(verify_token)): |
|
if not image: |
|
raise HTTPException(status_code=400, detail="No image provided") |
|
|
|
try: |
|
image_data = Image.open(image.file) |
|
image_data = image_data.convert("RGBA") |
|
image_data = preprocess_image(image_data) |
|
buffer = io.BytesIO() |
|
image_data.save(buffer, format="PNG") |
|
buffer.seek(0) |
|
|
|
return StreamingResponse( |
|
content=buffer, |
|
media_type='image/png', |
|
headers={ |
|
"Content-Disposition": "inline; filename=image.png", |
|
"Content-Length": str(len(buffer.getvalue())) |
|
} |
|
) |
|
|
|
except Exception as e: |
|
print(e) |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/") |
|
def root_route(): |
|
return JSONResponse({"message": "Hi"}) |
|
|
|
import requests |
|
|
|
if __name__ == "__main__": |
|
print("APPLICATION IS RUNNING ...") |
|
import uvicorn |
|
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") |
|
pipeline.cuda() |
|
|
|
print("STARTING SERVER ...") |
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
print("SERVER STARTED!!!") |
|
|
|
|
|
requests.get(os.getenv("REQUEST_QUEUE_URL")) |