File size: 13,325 Bytes
4b2317d c205daf 4b2317d 20b8c10 4b2317d 6db0a4a 4b2317d cd41f5f 4b2317d cd41f5f 4b2317d db6a3b7 4b2317d db6a3b7 4b2317d db6a3b7 4b2317d b7b00e2 4b2317d b7b00e2 4b2317d 9880f3d 4b2317d 9880f3d 4b2317d 9880f3d 4b2317d dc2c5e4 4b2317d dc2c5e4 4b2317d dc2c5e4 4b2317d b7b00e2 df8077b 0122697 dc2c5e4 b710e30 dc2c5e4 af0158a dabe3cc af0158a dabe3cc b710e30 93b510d b710e30 4b2317d 93b510d 4b2317d dc2c5e4 7e72c1b b710e30 c205daf 0122697 c205daf 0122697 86715a0 0122697 c205daf 0122697 c205daf 1251c7c 6c1568d db6a3b7 0937b3a dc2c5e4 6db0a4a dc2c5e4 0937b3a dc2c5e4 6c1568d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import io
import os
import os
os.environ["OMP_NUM_THREADS"] = "3500"
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
# pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
# pipeline.cuda()
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
Image.Image: The preprocessed image.
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
"""
Preprocess a list of input images.
Args:
images (List[Tuple[Image.Image, str]]): The input images.
Returns:
List[Image.Image]: The preprocessed images.
"""
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
return processed_images
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed.
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU
def image_to_3d(
image: Image.Image,
multiimages: List[Tuple[Image.Image, str]],
is_multiimage: bool,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
req: gr.Request,
) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
image (Image.Image): The input image.
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
is_multiimage (bool): Whether is in multi-image mode.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
if not is_multiimage:
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
else:
outputs = pipeline.run_multi_image(
[image[0] for image in multiimages],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
torch.cuda.empty_cache()
return state, video_path
@spaces.GPU
def image_to_3d2(
image: Image.Image,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
) -> Tuple[dict, str]:
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
video_path = temp_video.name
imageio.mimsave(video_path, video, fps=15)
torch.cuda.empty_cache()
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
return state, video_path
import random
@spaces.GPU(duration=90)
def extract_glb(
state: dict,
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
user_dir = TMP_DIR
gs, mesh = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, f"test_{random.random()}.glb")
glb.export(glb_path)
torch.cuda.empty_cache()
return glb_path, glb_path
@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
"""
Extract a Gaussian file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
Returns:
str: The path to the extracted Gaussian file.
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
gs, _ = unpack_state(state)
gaussian_path = os.path.join(user_dir, 'sample.ply')
gs.save_ply(gaussian_path)
torch.cuda.empty_cache()
return gaussian_path, gaussian_path
def prepare_multi_example() -> List[Image.Image]:
multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
images = []
for case in multi_case:
_images = []
for i in range(1, 4):
img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
W, H = img.size
img = img.resize((int(W / H * 512), 512))
_images.append(np.array(img))
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
return images
def split_image(image: Image.Image) -> List[Image.Image]:
"""
Split an image into multiple views.
"""
image = np.array(image)
alpha = image[..., 3]
alpha = np.any(alpha>0, axis=0)
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
images = []
for s, e in zip(start_pos, end_pos):
images.append(Image.fromarray(image[:, s:e+1]))
return [preprocess_image(image) for image in images]
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, Header, Response
from fastapi.responses import JSONResponse, FileResponse, StreamingResponse
import tempfile
import os
app = FastAPI()
def verify_token(authorization: str = Header(...)):
if not authorization.startswith("Bearer "):
raise HTTPException(status_code=403, detail="Invalid or missing token")
token = authorization.split("Bearer ")[1]
if token != os.getenv("AUTH_TOKEN"):
raise HTTPException(status_code=403, detail="Invalid or missing token")
@app.post("/generate")
async def generate_3d(image: UploadFile = File(...), token: str = Depends(verify_token)):
if not image:
raise HTTPException(status_code=400, detail="No image provided")
try:
image_data = Image.open(image.file)
image_data = image_data.convert("RGBA")
image_data = preprocess_image(image_data)
seed = 42
ss_guidance_strength = 7.5
ss_sampling_steps = 12
slat_guidance_strength = 3.0
slat_sampling_steps = 12
state, _ = image_to_3d2(
image_data,
seed=seed,
ss_guidance_strength=ss_guidance_strength,
ss_sampling_steps=ss_sampling_steps,
slat_guidance_strength=slat_guidance_strength,
slat_sampling_steps=slat_sampling_steps,
)
mesh_simplify = 0.95
texture_size = 1024
glb_path, _ = extract_glb(
state=state,
mesh_simplify=mesh_simplify,
texture_size=texture_size,
req=None # Assuming req is not needed here
)
return FileResponse(glb_path, media_type='application/octet-stream', filename='model.glb')
except Exception as e:
print("ERROR IN GENERATING 3D FILE : " , e)
raise HTTPException(status_code=500, detail=str(e))
@app.post("/remove-image-background")
async def remove_image_background(image: UploadFile = File(...), token: str = Depends(verify_token)):
if not image:
raise HTTPException(status_code=400, detail="No image provided")
try:
image_data = Image.open(image.file)
image_data = image_data.convert("RGBA")
image_data = preprocess_image(image_data)
buffer = io.BytesIO()
image_data.save(buffer, format="PNG")
buffer.seek(0)
return StreamingResponse(
content=buffer,
media_type='image/png',
headers={
"Content-Disposition": "inline; filename=image.png",
"Content-Length": str(len(buffer.getvalue()))
}
)
except Exception as e:
print(e)
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
def root_route():
return JSONResponse({"message": "Hi"})
import requests
# Launch the Gradio app
if __name__ == "__main__":
print("APPLICATION IS RUNNING ...")
import uvicorn
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
print("STARTING SERVER ...")
uvicorn.run(app, host="0.0.0.0", port=7860)
print("SERVER STARTED!!!")
#When ever server starts running again, it will send a request to the client application, to run the requests queues
requests.get(os.getenv("REQUEST_QUEUE_URL")) |