File size: 13,325 Bytes
4b2317d
 
 
c205daf
4b2317d
20b8c10
 
 
 
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6db0a4a
 
4b2317d
 
 
 
cd41f5f
 
4b2317d
 
 
cd41f5f
 
4b2317d
 
 
db6a3b7
4b2317d
 
db6a3b7
4b2317d
 
 
 
 
db6a3b7
 
4b2317d
 
 
b7b00e2
4b2317d
 
b7b00e2
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9880f3d
 
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
9880f3d
4b2317d
 
 
 
9880f3d
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2c5e4
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2c5e4
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2c5e4
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7b00e2
df8077b
0122697
dc2c5e4
b710e30
dc2c5e4
 
 
af0158a
 
dabe3cc
 
af0158a
dabe3cc
b710e30
 
93b510d
b710e30
4b2317d
 
 
 
 
 
93b510d
4b2317d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2c5e4
7e72c1b
b710e30
c205daf
 
 
 
 
 
 
 
0122697
c205daf
 
0122697
 
 
86715a0
 
 
 
0122697
c205daf
 
0122697
c205daf
 
1251c7c
 
 
 
6c1568d
db6a3b7
 
0937b3a
dc2c5e4
 
6db0a4a
 
dc2c5e4
0937b3a
dc2c5e4
6c1568d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import io
import os
import os
os.environ["OMP_NUM_THREADS"] = "3500"


import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils


MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)

# pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
# pipeline.cuda()

def start_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    os.makedirs(user_dir, exist_ok=True)
    
    
def end_session(req: gr.Request):
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    shutil.rmtree(user_dir)


def preprocess_image(image: Image.Image) -> Image.Image:
    """
    Preprocess the input image.

    Args:
        image (Image.Image): The input image.

    Returns:
        Image.Image: The preprocessed image.
    """
    processed_image = pipeline.preprocess_image(image)
    return processed_image


def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
    """
    Preprocess a list of input images.
    
    Args:
        images (List[Tuple[Image.Image, str]]): The input images.
        
    Returns:
        List[Image.Image]: The preprocessed images.
    """
    images = [image[0] for image in images]
    processed_images = [pipeline.preprocess_image(image) for image in images]
    return processed_images


def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        'gaussian': {
            **gs.init_params,
            '_xyz': gs._xyz.cpu().numpy(),
            '_features_dc': gs._features_dc.cpu().numpy(),
            '_scaling': gs._scaling.cpu().numpy(),
            '_rotation': gs._rotation.cpu().numpy(),
            '_opacity': gs._opacity.cpu().numpy(),
        },
        'mesh': {
            'vertices': mesh.vertices.cpu().numpy(),
            'faces': mesh.faces.cpu().numpy(),
        },
    }
    
    
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
    gs = Gaussian(
        aabb=state['gaussian']['aabb'],
        sh_degree=state['gaussian']['sh_degree'],
        mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
        scaling_bias=state['gaussian']['scaling_bias'],
        opacity_bias=state['gaussian']['opacity_bias'],
        scaling_activation=state['gaussian']['scaling_activation'],
    )
    gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
    gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
    gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
    gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
    gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
    
    mesh = edict(
        vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
        faces=torch.tensor(state['mesh']['faces'], device='cuda'),
    )
    
    return gs, mesh


def get_seed(randomize_seed: bool, seed: int) -> int:
    """
    Get the random seed.
    """
    return np.random.randint(0, MAX_SEED) if randomize_seed else seed


@spaces.GPU
def image_to_3d(
    image: Image.Image,
    multiimages: List[Tuple[Image.Image, str]],
    is_multiimage: bool,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
    multiimage_algo: Literal["multidiffusion", "stochastic"],
    req: gr.Request,
) -> Tuple[dict, str]:
    """
    Convert an image to a 3D model.

    Args:
        image (Image.Image): The input image.
        multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
        is_multiimage (bool): Whether is in multi-image mode.
        seed (int): The random seed.
        ss_guidance_strength (float): The guidance strength for sparse structure generation.
        ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
        slat_guidance_strength (float): The guidance strength for structured latent generation.
        slat_sampling_steps (int): The number of sampling steps for structured latent generation.
        multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.

    Returns:
        dict: The information of the generated 3D model.
        str: The path to the video of the 3D model.
    """
    
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    if not is_multiimage:
        outputs = pipeline.run(
            image,
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
        )
    else:
        outputs = pipeline.run_multi_image(
            [image[0] for image in multiimages],
            seed=seed,
            formats=["gaussian", "mesh"],
            preprocess_image=False,
            sparse_structure_sampler_params={
                "steps": ss_sampling_steps,
                "cfg_strength": ss_guidance_strength,
            },
            slat_sampler_params={
                "steps": slat_sampling_steps,
                "cfg_strength": slat_guidance_strength,
            },
            mode=multiimage_algo,
        )
    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    video_path = os.path.join(user_dir, 'sample.mp4')
    imageio.mimsave(video_path, video, fps=15)
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    torch.cuda.empty_cache()
    return state, video_path


@spaces.GPU
def image_to_3d2(
    image: Image.Image,
    seed: int,
    ss_guidance_strength: float,
    ss_sampling_steps: int,
    slat_guidance_strength: float,
    slat_sampling_steps: int,
) -> Tuple[dict, str]:
    
    outputs = pipeline.run(
        image,
        seed=seed,
        formats=["gaussian", "mesh"],
        preprocess_image=False,
        sparse_structure_sampler_params={
            "steps": ss_sampling_steps,
            "cfg_strength": ss_guidance_strength,
        },
        slat_sampler_params={
            "steps": slat_sampling_steps,
            "cfg_strength": slat_guidance_strength,
        },
    )

    video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
    video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
    video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video:
        video_path = temp_video.name
        imageio.mimsave(video_path, video, fps=15)
    
    torch.cuda.empty_cache()
    state = pack_state(outputs['gaussian'][0], outputs['mesh'][0])
    return state, video_path

import random
@spaces.GPU(duration=90)
def extract_glb(
    state: dict,
    mesh_simplify: float,
    texture_size: int,
    req: gr.Request,
) -> Tuple[str, str]:
    """
    Extract a GLB file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.
        mesh_simplify (float): The mesh simplification factor.
        texture_size (int): The texture resolution.

    Returns:
        str: The path to the extracted GLB file.
    """
    user_dir = TMP_DIR
    gs, mesh = unpack_state(state)
    glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
    glb_path = os.path.join(user_dir, f"test_{random.random()}.glb")

    glb.export(glb_path)
    torch.cuda.empty_cache()
    return glb_path, glb_path


@spaces.GPU
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
    """
    Extract a Gaussian file from the 3D model.

    Args:
        state (dict): The state of the generated 3D model.

    Returns:
        str: The path to the extracted Gaussian file.
    """
    user_dir = os.path.join(TMP_DIR, str(req.session_hash))
    gs, _ = unpack_state(state)
    gaussian_path = os.path.join(user_dir, 'sample.ply')
    gs.save_ply(gaussian_path)
    torch.cuda.empty_cache()
    return gaussian_path, gaussian_path


def prepare_multi_example() -> List[Image.Image]:
    multi_case = list(set([i.split('_')[0] for i in os.listdir("assets/example_multi_image")]))
    images = []
    for case in multi_case:
        _images = []
        for i in range(1, 4):
            img = Image.open(f'assets/example_multi_image/{case}_{i}.png')
            W, H = img.size
            img = img.resize((int(W / H * 512), 512))
            _images.append(np.array(img))
        images.append(Image.fromarray(np.concatenate(_images, axis=1)))
    return images


def split_image(image: Image.Image) -> List[Image.Image]:
    """
    Split an image into multiple views.
    """
    image = np.array(image)
    alpha = image[..., 3]
    alpha = np.any(alpha>0, axis=0)
    start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
    end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
    images = []
    for s, e in zip(start_pos, end_pos):
        images.append(Image.fromarray(image[:, s:e+1]))
    return [preprocess_image(image) for image in images]

from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, Header, Response
from fastapi.responses import JSONResponse, FileResponse, StreamingResponse
import tempfile
import os

app = FastAPI()

def verify_token(authorization: str = Header(...)):
    if not authorization.startswith("Bearer "):
        raise HTTPException(status_code=403, detail="Invalid or missing token")
    
    token = authorization.split("Bearer ")[1]
    if token != os.getenv("AUTH_TOKEN"):
        raise HTTPException(status_code=403, detail="Invalid or missing token")

@app.post("/generate")
async def generate_3d(image: UploadFile = File(...), token: str = Depends(verify_token)):
    if not image:
        raise HTTPException(status_code=400, detail="No image provided")

    try:
        image_data = Image.open(image.file)
        image_data = image_data.convert("RGBA")
        image_data = preprocess_image(image_data)

        seed = 42
        ss_guidance_strength = 7.5
        ss_sampling_steps = 12
        slat_guidance_strength = 3.0
        slat_sampling_steps = 12

        state, _ = image_to_3d2(
            image_data,
            seed=seed,
            ss_guidance_strength=ss_guidance_strength,
            ss_sampling_steps=ss_sampling_steps,
            slat_guidance_strength=slat_guidance_strength,
            slat_sampling_steps=slat_sampling_steps,
        )
        mesh_simplify = 0.95
        texture_size = 1024
        glb_path, _ = extract_glb(
            state=state,
            mesh_simplify=mesh_simplify,
            texture_size=texture_size,
            req=None  # Assuming req is not needed here
        )
        return FileResponse(glb_path, media_type='application/octet-stream', filename='model.glb')

    except Exception as e:
        print("ERROR IN GENERATING 3D FILE : " , e)
        raise HTTPException(status_code=500, detail=str(e))

@app.post("/remove-image-background")
async def remove_image_background(image: UploadFile = File(...), token: str = Depends(verify_token)):
    if not image:
        raise HTTPException(status_code=400, detail="No image provided")

    try:
        image_data = Image.open(image.file)
        image_data = image_data.convert("RGBA")
        image_data = preprocess_image(image_data)
        buffer = io.BytesIO()
        image_data.save(buffer, format="PNG")
        buffer.seek(0)

        return StreamingResponse(
            content=buffer,
            media_type='image/png',
            headers={
                "Content-Disposition": "inline; filename=image.png",
                "Content-Length": str(len(buffer.getvalue()))
            }
        )

    except Exception as e:
        print(e)
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/")
def root_route():
    return JSONResponse({"message": "Hi"})

import requests
# Launch the Gradio app
if __name__ == "__main__":
    print("APPLICATION IS RUNNING ...")
    import uvicorn
    
    pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
    pipeline.cuda()
    
    print("STARTING SERVER ...")
    uvicorn.run(app, host="0.0.0.0", port=7860)
    print("SERVER STARTED!!!")
    
    #When ever server starts running again, it will send a request to the client application, to run the requests queues
    requests.get(os.getenv("REQUEST_QUEUE_URL"))