rynmurdock's picture
init
c5ca37a
import math
import torch
import torch.nn as nn
from .utils import log_sum_exp
import pdb
import sys
sys.path.append('../../')
from pytorch_transformers.modeling_bert import BertEmbeddings
import torch.nn.functional as F
class CARA(nn.Module):
def __init__(self, encoder, decoder, tokenizer_encoder, tokenizer_decoder, args): #
super(CARA, self).__init__()
self.encoder = encoder
self.decoder = decoder
self.tokenizer_encoder = tokenizer_encoder
self.tokenizer_decoder = tokenizer_decoder
self.args = args
self.nz = args.latent_size
self.bos_token_id_list = self.tokenizer_decoder.encode(self.tokenizer_decoder.bos_token)
self.pad_token_id = self.tokenizer_decoder.encode(self.tokenizer_decoder.pad_token)[0]
# connector: from Bert hidden units to the latent space
self.linear = nn.Linear(encoder.config.hidden_size, self.nz, bias=False)
# # Standard Normal prior
# loc = torch.zeros(self.nz, device=args.device)
# scale = torch.ones(self.nz, device=args.device)
# self.prior = torch.distributions.normal.Normal(loc, scale)
self.label_embedding = nn.Embedding(args.label_size, self.nz, padding_idx=0) # use the same size as latent_z so as to use the same decoder.linear()
self.latent_generator = nn.Linear(self.nz, self.nz)
self.latent_classifier = nn.Linear(self.nz, args.label_size if args.label_size > 2 else 1)
self.latent_discriminator = nn.Linear(self.nz, 1)
self.gpt_embeddings = nn.Embedding(self.decoder.config.vocab_size, self.decoder.config.n_embd)
self.gpt_embeddings.weight.data = decoder.transformer.wte.weight.data
self.conv1 = nn.Conv1d(self.encoder.config.hidden_size, self.encoder.config.hidden_size, 3)
self.classifier = nn.Linear(self.encoder.config.hidden_size, 1 if args.label_size <= 2 else args.label_size)
self.CrossEntropyLoss = torch.nn.CrossEntropyLoss()
self.BCEWithLogitsLoss = torch.nn.BCEWithLogitsLoss()
def forward(self, input_seq_ids, tgt_seq_ids, cond_labels, attention_mask):
# inputs: (B, seq_len)
# labels: (B, seq_len)
# cond_labels: (B), conditional labels.
ones_label = torch.ones_like(cond_labels).to(dtype=torch.float32)
zeros_label = torch.zeros_like(cond_labels).to(dtype=torch.float32)
random_noise = torch.nn.init.normal_(torch.empty(input_seq_ids.size(0), self.nz)).to(device=input_seq_ids.device, dtype=torch.float32)
# Encode inputs
outputs = self.encoder(input_seq_ids, attention_mask=attention_mask)
pooled_hidden_fea = outputs[1] # (B, dim_h)
# Encode z
latent_z = self.linear(pooled_hidden_fea) # (B, nz)
# Generate z
gen_z = self.latent_generator(random_noise) # (B, nz)
#################### Latent discriminator for sampling from a simple distribution ####################
prob_encode_z_dis = self.latent_discriminator(latent_z).squeeze(1).float() # (B)
prob_gen_z_dis = self.latent_discriminator(gen_z).squeeze(1).float() # (B)
# Train latent discriminator
loss_lsd = self.BCEWithLogitsLoss(prob_gen_z_dis, zeros_label) + self.BCEWithLogitsLoss(prob_encode_z_dis, ones_label)
acc_encode_z_dis = ((prob_encode_z_dis >= 0).float() == ones_label).float()
acc_gen_z_dis = ((prob_gen_z_dis >= 0).float() == zeros_label).float()
# Train sampler adversarially
loss_lsg = self.BCEWithLogitsLoss(prob_gen_z_dis, ones_label)
#################### Latent classifier for disentanglement ####################
prob_encode_z_cls = self.latent_classifier(latent_z) # (B, n_labels)
if self.args.label_size <= 2:
prob_encode_z_cls = prob_encode_z_cls.squeeze(1) # (B)
# Train latent classifier
loss_lsc = self.BCEWithLogitsLoss(prob_encode_z_cls, cond_labels.float())
acc_encode_z_cls = ((prob_encode_z_cls >= 0).float() == cond_labels.float()).float()
# Train encoder adversarially
loss_encoder = 1 - self.BCEWithLogitsLoss(prob_encode_z_cls, cond_labels.float())
else:
# Train latent classifier
loss_lsc = self.CrossEntropyLoss(prob_encode_z_cls, cond_labels)
acc_encode_z_cls = (torch.argmax(prob_encode_z_cls, dim=-1) == cond_labels).float()
# Train encoder adversarially
loss_encoder = 1 - self.CrossEntropyLoss(prob_encode_z_cls, cond_labels)
#################### Recontruction loss with latent z and label emb ####################
# Embed labels
label_emb = self.label_embedding(cond_labels) # (B, hidden_size)
# past_label = self.decoder.linear(label_emb) # (B, n_blocks * hidden_size) # todo: use the same linear layer for latent_z for now.
if self.args.label_size <= 2:
sampled_cond_labels = 1 - cond_labels
else:
raise NotImplementedError # todo: currently only implemented for binary labels. need to change for multi-class labels.
sampled_label_emb = self.label_embedding(sampled_cond_labels) # (B, hidden_size)
# past_sampled_label = self.decoder.linear(sampled_label_emb) # (B, n_blocks * hidden_size) # todo: use the same linear layer for latent_z for now.
past_sampled_label = sampled_label_emb
# Generate based on encoded z and gt labels. (reconstruction)
# past_z = self.decoder.linear(latent_z) # (B, n_blocks * hidden_size)
past_z = latent_z
# gen_past_z = self.decoder.linear(gen_z) # (B, n_blocks * hidden_size)
gen_past_z = gen_z # (B, n_blocks * hidden_size)
# past = torch.cat([past_z.unsqueeze(1), past_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
past = latent_z + label_emb # (B, n_blocks * hidden_size)
outputs = self.decoder(input_ids=tgt_seq_ids, past=past, labels=tgt_seq_ids, label_ignore=self.pad_token_id)
loss_rec = outputs[0]
#################### Train a classifier in the observation space ####################
tgt_emb = self.gpt_embeddings(tgt_seq_ids)
tgt_encode = self.conv1(tgt_emb.transpose(1, 2)) # (B, dim_h, seq_len)
tgt_encode = torch.mean(tgt_encode, dim=-1) # (B, dim_h)
prob_cls = self.classifier(tgt_encode) # (B, n_labels)
if self.args.label_size <= 2:
prob_cls = prob_cls.squeeze(1)
loss_cls = self.BCEWithLogitsLoss(prob_cls, cond_labels.float())
pred_cls = (prob_cls >= 0).to(dtype=torch.long)
else:
loss_cls = self.CrossEntropyLoss(prob_cls, cond_labels)
pred_cls = torch.argmax(prob_cls, dim=-1)
acc_cls = (pred_cls == cond_labels).float()
# Generate based on encoded z and sampled labels (attribute transfer)
# at_past = torch.cat([past_z.unsqueeze(1), past_sampled_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
# at_generated_soft = self.sample_sequence_conditional_batch_soft(past=at_past, context=self.bos_token_id_list) # (B, seq_len, vocab_size)
# # Classifier on attribute transfer generated sentences. Train Generator on attribute transfer.
# at_soft_emb = torch.matmul(at_generated_soft, self.gpt_embeddings.weight)
# at_soft_encode = self.conv1(at_soft_emb.transpose(1, 2)) # (B, dim_h, seq_len)
# at_soft_encode = torch.mean(at_soft_encode, dim=-1) # (B, dim_h)
# prob_at_soft_cls = self.classifier(at_soft_encode) # (B, 1)
# if self.args.label_size <= 2:
# prob_at_soft_cls = prob_at_soft_cls.squeeze(1)
# loss_at_soft_cls = self.BCEWithLogitsLoss(prob_at_soft_cls, sampled_cond_labels.float())
# pred_at_soft_cls = (prob_at_soft_cls >= 0).to(torch.long)
# else:
# loss_at_soft_cls = self.CrossEntropyLoss(prob_at_soft_cls, sampled_cond_labels)
# pred_at_soft_cls = torch.argmax(prob_at_soft_cls, dim=-1)
# acc_at_soft_cls = (pred_at_soft_cls == sampled_cond_labels).float()
# Loss
loss_latent_space = (loss_encoder + loss_lsc) + (loss_lsd + loss_lsg) + self.args.beta_cls * loss_cls # + loss_at_soft_cls
loss = loss_rec + 0.0 * loss_latent_space
if not self.training:
# Generate based on encoded z and gt labels
generated = self.sample_sequence_conditional_batch(past=past, context=self.bos_token_id_list)
# Generate based on encoded z and sampled labels (attribute transfer)
# at_past = torch.cat([past_z.unsqueeze(1), past_sampled_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
at_past = past_z + past_sampled_label # (B, n_blocks * hidden_size)
at_generated = self.sample_sequence_conditional_batch(past=at_past, context=self.bos_token_id_list) # (B, seq_len)
# Generate based on sampled z and sampled labels. (conditional generation)
# cg_past = torch.cat([gen_past_z.unsqueeze(1), past_sampled_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
cg_past = gen_past_z + past_sampled_label # (B, n_blocks * hidden_size)
cg_generated = self.sample_sequence_conditional_batch(past=cg_past, context=self.bos_token_id_list) # (B, seq_len)
# classifier on gt generated sentences.
ge_emb = self.gpt_embeddings(generated)
ge_encode = self.conv1(ge_emb.transpose(1, 2)) # (B, dim_h, seq_len)
ge_encode = torch.mean(ge_encode, dim=-1) # (B, dim_h)
prob_ge_cls = self.classifier(ge_encode) # (B, 1)
if self.args.label_size <= 2:
pred_ge_cls = (prob_ge_cls.squeeze(1) >= 0).to(torch.long)
else:
pred_ge_cls = torch.argmax(prob_ge_cls, dim=-1)
acc_ge_cls = (pred_ge_cls == cond_labels).float()
# classifier on attribute transfer generated sentences.
at_emb = self.gpt_embeddings(at_generated)
at_encode = self.conv1(at_emb.transpose(1, 2)) # (B, dim_h, seq_len)
at_encode = torch.mean(at_encode, dim=-1) # (B, dim_h)
prob_at_cls = self.classifier(at_encode) # (B, 1)
if self.args.label_size <= 2:
pred_at_cls = (prob_at_cls.squeeze(1) >= 0).to(torch.long)
else:
pred_at_cls = torch.argmax(prob_at_cls, dim=-1)
acc_at_cls = (pred_at_cls == sampled_cond_labels).float()
# classifier on conditional generated sentences.
cg_emb = self.gpt_embeddings(cg_generated)
cg_encode = self.conv1(cg_emb.transpose(1, 2)) # (B, dim_h, seq_len)
cg_encode = torch.mean(cg_encode, dim=-1) # (B, dim_h)
prob_cg_cls = self.classifier(cg_encode) # (B, 1)
if self.args.label_size <= 2:
pred_cg_cls = (prob_cg_cls.squeeze(1) >= 0).to(torch.long)
else:
pred_cg_cls = torch.argmax(prob_cg_cls, dim=-1)
acc_cg_cls = (pred_cg_cls == sampled_cond_labels).float()
result = {
'sampled_cond_labels': sampled_cond_labels,
'cond_labels': cond_labels,
'tgt_seq_ids': tgt_seq_ids,
'generated': generated,
'at_generated': at_generated,
'cg_generated': cg_generated,
'acc_encode_z_dis': acc_encode_z_dis,
'acc_gen_z_dis': acc_gen_z_dis,
'acc_encode_z_cls': acc_encode_z_cls,
'acc_cls': acc_cls,
'acc_ge_cls': acc_ge_cls,
'acc_at_cls': acc_at_cls,
'acc_cg_cls': acc_cg_cls,
'pred_cls': pred_cls,
'pred_ge_cls': pred_ge_cls,
'pred_at_cls': pred_at_cls,
'pred_cg_cls': pred_cg_cls,
}
return result
loss_dict = {
'loss': loss,
'loss_rec': loss_rec,
'loss_encoder': loss_encoder,
'loss_lsc': loss_lsc,
'loss_lsd': loss_lsd,
'loss_lsg': loss_lsg,
'loss_cls': loss_cls,
# 'loss_at_soft_cls': loss_at_soft_cls,
}
acc_dict = {
'acc_encode_z_dis': acc_encode_z_dis,
'acc_gen_z_dis': acc_gen_z_dis,
'acc_encode_z_cls': acc_encode_z_cls,
'acc_cls': acc_cls,
# 'acc_at_soft_cls': acc_at_soft_cls,
}
return loss_dict, acc_dict
def sample_sequence_conditional_batch(self, past, context):
# context: a single id of <BOS>
# past: (B, past_seq_len dim_h)
num_samples = past.size(0)
context = torch.tensor(context, dtype=torch.long, device=past.device)
context = context.unsqueeze(0).repeat(num_samples, 1)
generated = context # (B, 1)
# with torch.no_grad():
while generated.size(-1) < self.args.block_size:
inputs = {'input_ids': generated, 'past': past}
outputs = self.decoder(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
lm_logits = outputs[0]
# softmax sample
next_tokens_logits = lm_logits[:, -1, :] / self.args.temperature # (B, 1, vocab_size)
filtered_logits = self.top_k_top_p_filtering_batch(next_tokens_logits, top_k=self.args.top_k, top_p=self.args.top_p) # (B, 1, vocab_size)
filtered_logits = F.softmax(filtered_logits, dim=-1)
next_tokens = torch.multinomial(filtered_logits, num_samples=1) # (B, 1)
generated = torch.cat((generated, next_tokens), dim=1) # (B, seq_len+1)
not_finished = next_tokens != self.tokenizer_decoder.encode('<EOS>')[0]
if torch.sum(not_finished) == 0:
break
return generated # (B, seq_len)
def top_k_top_p_filtering_batch(self, logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
# assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
threshold = torch.topk(logits, top_k, dim=-1)[0][:, -1, None]
logits.masked_fill_(logits < threshold, filter_value) # (B, vocab_size)
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True) # (B, vocab_size)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # (B, vocab_size)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits.masked_fill_(indices_to_remove, filter_value)
return logits
def sample_sequence_conditional_batch_soft(self, past, context):
# context: a single id of <BOS>
# past: (B, past_seq_len dim_h)
num_samples = past.size(0)
context = torch.tensor(context, dtype=torch.long, device=past.device).unsqueeze(0).repeat(num_samples, 1) # (B, 1)
context_soft = torch.FloatTensor(num_samples, self.decoder.config.vocab_size).zero_().to(device=past.device) # (B, vocab_size)
context_soft.scatter_(1, context, 1) # (B, vocab_size)
generated_soft = context_soft.unsqueeze(1) # (B, 1, vocab_size)
# with torch.no_grad():
while generated_soft.size(1) < self.args.block_size: # generated_soft: (B, seq_len, vocab_size)
inputs = {'soft_ids': generated_soft, 'past': past}
outputs = self.decoder(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
lm_logits = outputs[0] # (B, seq_len, vocab_size)
# Gumbel softmax sample
next_tokens_soft = gumbel_softmax(logits=lm_logits[:, -1:, :], temperature=self.args.soft_temperature, hard=False) # (B, 1, vocab_size)
generated_soft = torch.cat((generated_soft, next_tokens_soft), dim=1) # (B, seq_len+1, vocab_size)
# # softmax sample
# next_tokens_logits = lm_logits[:, -1, :] / self.args.temperature # (B, 1, vocab_size)
# filtered_logits = self.top_k_top_p_filtering_batch(next_tokens_logits, top_k=self.args.top_k, top_p=self.args.top_p) # (B, 1, vocab_size)
# filtered_logits = F.softmax(filtered_logits, dim=-1)
# next_tokens = torch.multinomial(filtered_logits, num_samples=1) # (B, 1)
# generated = torch.cat((generated, next_tokens), dim=1) # (B, seq_len+1)
next_tokens = torch.argmax(next_tokens_soft, dim=-1) # (B, 1)
not_finished = next_tokens != self.tokenizer_decoder.encode('<EOS>')[0]
if torch.sum(not_finished) == 0:
break
return generated_soft # (B, seq_len, vocab_size)
### Gumbel Softmax
def gumbel_softmax(logits, temperature, hard=False):
"""Sample from the Gumbel-Softmax distribution and optionally discretize.
Args:
logits: [..., n_class] unnormalized log-probs
temperature: non-negative scalar
hard: if True, take argmax, but differentiate w.r.t. soft sample y
Returns:
[..., n_class] sample from the Gumbel-Softmax distribution.
If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes
"""
y = gumbel_softmax_sample(logits, temperature) # (..., n_class)
if hard: # return onehot
shape = y.size()
_, ind = y.max(dim=-1)
y_hard = torch.zeros_like(y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1) # one hot
y_hard = y_hard.view(*shape)
# Set gradients w.r.t. y_hard gradients w.r.t. y
y = (y_hard - y).detach() + y
return y # (..., n_class)
from torch.nn import functional as F
def gumbel_softmax_sample(logits, temperature):
y = logits + sample_gumbel(logits.size(), logits.device)
return F.softmax(y / temperature, dim=-1)
def sample_gumbel(shape, device, eps=1e-20):
U = torch.rand(shape).to(device=device)
return -torch.log(-torch.log(U + eps) + eps)