File size: 19,558 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import math
import torch
import torch.nn as nn
from .utils import log_sum_exp
import pdb
import sys
sys.path.append('../../')
from pytorch_transformers.modeling_bert import BertEmbeddings
import torch.nn.functional as F


class CARA(nn.Module):
    def __init__(self, encoder, decoder, tokenizer_encoder, tokenizer_decoder, args): #
        super(CARA, self).__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.tokenizer_encoder = tokenizer_encoder
        self.tokenizer_decoder = tokenizer_decoder

        self.args = args
        self.nz = args.latent_size

        self.bos_token_id_list = self.tokenizer_decoder.encode(self.tokenizer_decoder.bos_token)
        self.pad_token_id = self.tokenizer_decoder.encode(self.tokenizer_decoder.pad_token)[0]

        # connector: from Bert hidden units to the latent space
        self.linear = nn.Linear(encoder.config.hidden_size, self.nz, bias=False)

        # # Standard Normal prior
        # loc = torch.zeros(self.nz, device=args.device)
        # scale = torch.ones(self.nz, device=args.device)
        # self.prior = torch.distributions.normal.Normal(loc, scale)

        self.label_embedding = nn.Embedding(args.label_size, self.nz, padding_idx=0)    # use the same size as latent_z so as to use the same decoder.linear()
        self.latent_generator = nn.Linear(self.nz, self.nz)
        self.latent_classifier = nn.Linear(self.nz, args.label_size if args.label_size > 2 else 1)
        self.latent_discriminator = nn.Linear(self.nz, 1)

        self.gpt_embeddings = nn.Embedding(self.decoder.config.vocab_size, self.decoder.config.n_embd)
        self.gpt_embeddings.weight.data = decoder.transformer.wte.weight.data

        self.conv1 = nn.Conv1d(self.encoder.config.hidden_size, self.encoder.config.hidden_size, 3)
        self.classifier = nn.Linear(self.encoder.config.hidden_size, 1 if args.label_size <= 2 else args.label_size)

        self.CrossEntropyLoss = torch.nn.CrossEntropyLoss()
        self.BCEWithLogitsLoss = torch.nn.BCEWithLogitsLoss()

    def forward(self, input_seq_ids, tgt_seq_ids, cond_labels, attention_mask):
        # inputs: (B, seq_len)
        # labels: (B, seq_len)
        # cond_labels: (B), conditional labels.

        ones_label = torch.ones_like(cond_labels).to(dtype=torch.float32)
        zeros_label = torch.zeros_like(cond_labels).to(dtype=torch.float32)
        random_noise = torch.nn.init.normal_(torch.empty(input_seq_ids.size(0), self.nz)).to(device=input_seq_ids.device, dtype=torch.float32)

        # Encode inputs
        outputs = self.encoder(input_seq_ids, attention_mask=attention_mask)
        pooled_hidden_fea = outputs[1]  # (B, dim_h)

        # Encode z
        latent_z = self.linear(pooled_hidden_fea)    # (B, nz)

        # Generate z
        gen_z = self.latent_generator(random_noise)  # (B, nz)

        #################### Latent discriminator for sampling from a simple distribution #################### 
        prob_encode_z_dis = self.latent_discriminator(latent_z).squeeze(1).float()  # (B)
        prob_gen_z_dis = self.latent_discriminator(gen_z).squeeze(1).float()  # (B)
        # Train latent discriminator
        loss_lsd = self.BCEWithLogitsLoss(prob_gen_z_dis, zeros_label) + self.BCEWithLogitsLoss(prob_encode_z_dis, ones_label)
        acc_encode_z_dis = ((prob_encode_z_dis >= 0).float() == ones_label).float()
        acc_gen_z_dis = ((prob_gen_z_dis >= 0).float() == zeros_label).float()
        # Train sampler adversarially
        loss_lsg = self.BCEWithLogitsLoss(prob_gen_z_dis, ones_label)

        ####################  Latent classifier for disentanglement #################### 
        prob_encode_z_cls = self.latent_classifier(latent_z)  # (B, n_labels)
        if self.args.label_size <= 2:
            prob_encode_z_cls = prob_encode_z_cls.squeeze(1)  # (B)
            # Train latent classifier
            loss_lsc = self.BCEWithLogitsLoss(prob_encode_z_cls, cond_labels.float())
            acc_encode_z_cls = ((prob_encode_z_cls >= 0).float() == cond_labels.float()).float()
            # Train encoder adversarially
            loss_encoder = 1 - self.BCEWithLogitsLoss(prob_encode_z_cls, cond_labels.float())
        else:
            # Train latent classifier
            loss_lsc = self.CrossEntropyLoss(prob_encode_z_cls, cond_labels)
            acc_encode_z_cls = (torch.argmax(prob_encode_z_cls, dim=-1) == cond_labels).float()
            # Train encoder adversarially
            loss_encoder = 1 - self.CrossEntropyLoss(prob_encode_z_cls, cond_labels)


        #################### Recontruction loss with latent z and label emb #################### 
        # Embed labels
        label_emb = self.label_embedding(cond_labels)  # (B, hidden_size)
        # past_label = self.decoder.linear(label_emb)    # (B, n_blocks * hidden_size)  # todo: use the same linear layer for latent_z for now.
        if self.args.label_size <= 2:
            sampled_cond_labels = 1 - cond_labels
        else:
            raise NotImplementedError    # todo: currently only implemented for binary labels. need to change for multi-class labels.
        sampled_label_emb = self.label_embedding(sampled_cond_labels)  # (B, hidden_size)
        # past_sampled_label = self.decoder.linear(sampled_label_emb)    # (B, n_blocks * hidden_size)  # todo: use the same linear layer for latent_z for now.
        past_sampled_label = sampled_label_emb

        # Generate based on encoded z and gt labels. (reconstruction)
        # past_z = self.decoder.linear(latent_z)    # (B, n_blocks * hidden_size)
        past_z = latent_z
        # gen_past_z = self.decoder.linear(gen_z)    # (B, n_blocks * hidden_size)
        gen_past_z = gen_z    # (B, n_blocks * hidden_size)

        # past = torch.cat([past_z.unsqueeze(1), past_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)

        past = latent_z + label_emb # (B, n_blocks * hidden_size)

        outputs = self.decoder(input_ids=tgt_seq_ids, past=past, labels=tgt_seq_ids, label_ignore=self.pad_token_id)
        loss_rec = outputs[0]

        ####################  Train a classifier in the observation space #################### 
        tgt_emb = self.gpt_embeddings(tgt_seq_ids)
        tgt_encode = self.conv1(tgt_emb.transpose(1, 2))    # (B, dim_h, seq_len)
        tgt_encode = torch.mean(tgt_encode, dim=-1) # (B, dim_h)
        prob_cls = self.classifier(tgt_encode)   # (B, n_labels)
        if self.args.label_size <= 2:
            prob_cls = prob_cls.squeeze(1)
            loss_cls = self.BCEWithLogitsLoss(prob_cls, cond_labels.float())
            pred_cls = (prob_cls >= 0).to(dtype=torch.long)
        else:
            loss_cls = self.CrossEntropyLoss(prob_cls, cond_labels)
            pred_cls = torch.argmax(prob_cls, dim=-1)
        acc_cls = (pred_cls == cond_labels).float()

        # Generate based on encoded z and sampled labels (attribute transfer)
        # at_past = torch.cat([past_z.unsqueeze(1), past_sampled_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
        # at_generated_soft = self.sample_sequence_conditional_batch_soft(past=at_past, context=self.bos_token_id_list) # (B, seq_len, vocab_size)

        # # Classifier on attribute transfer generated sentences. Train Generator on attribute transfer.
        # at_soft_emb = torch.matmul(at_generated_soft, self.gpt_embeddings.weight)
        # at_soft_encode = self.conv1(at_soft_emb.transpose(1, 2))    # (B, dim_h, seq_len)
        # at_soft_encode = torch.mean(at_soft_encode, dim=-1)   # (B, dim_h)
        # prob_at_soft_cls = self.classifier(at_soft_encode)    # (B, 1)
        # if self.args.label_size <= 2:
        #     prob_at_soft_cls = prob_at_soft_cls.squeeze(1)
        #     loss_at_soft_cls = self.BCEWithLogitsLoss(prob_at_soft_cls, sampled_cond_labels.float())
        #     pred_at_soft_cls = (prob_at_soft_cls >= 0).to(torch.long)
        # else:
        #     loss_at_soft_cls = self.CrossEntropyLoss(prob_at_soft_cls, sampled_cond_labels)
        #     pred_at_soft_cls = torch.argmax(prob_at_soft_cls, dim=-1)
        # acc_at_soft_cls = (pred_at_soft_cls == sampled_cond_labels).float()

        # Loss
        loss_latent_space = (loss_encoder + loss_lsc) + (loss_lsd + loss_lsg) + self.args.beta_cls * loss_cls # + loss_at_soft_cls
        loss = loss_rec + 0.0 * loss_latent_space

        if not self.training:
            # Generate based on encoded z and gt labels
            generated = self.sample_sequence_conditional_batch(past=past, context=self.bos_token_id_list)

            # Generate based on encoded z and sampled labels (attribute transfer)
            # at_past = torch.cat([past_z.unsqueeze(1), past_sampled_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
            at_past = past_z + past_sampled_label # (B, n_blocks * hidden_size)
            at_generated = self.sample_sequence_conditional_batch(past=at_past, context=self.bos_token_id_list) # (B, seq_len)

            # Generate based on sampled z and sampled labels. (conditional generation)
            # cg_past = torch.cat([gen_past_z.unsqueeze(1), past_sampled_label.unsqueeze(1)], dim=1) # (B, 2, n_blocks * hidden_size)
            cg_past = gen_past_z +  past_sampled_label # (B, n_blocks * hidden_size)
            cg_generated = self.sample_sequence_conditional_batch(past=cg_past, context=self.bos_token_id_list) # (B, seq_len)

            # classifier on gt generated sentences.
            ge_emb = self.gpt_embeddings(generated)
            ge_encode = self.conv1(ge_emb.transpose(1, 2))    # (B, dim_h, seq_len)
            ge_encode = torch.mean(ge_encode, dim=-1)   # (B, dim_h)
            prob_ge_cls = self.classifier(ge_encode)    # (B, 1)

            if self.args.label_size <= 2:
                pred_ge_cls = (prob_ge_cls.squeeze(1) >= 0).to(torch.long)
            else:
                pred_ge_cls = torch.argmax(prob_ge_cls, dim=-1)
            acc_ge_cls = (pred_ge_cls == cond_labels).float()

            # classifier on attribute transfer generated sentences.
            at_emb = self.gpt_embeddings(at_generated)
            at_encode = self.conv1(at_emb.transpose(1, 2))    # (B, dim_h, seq_len)
            at_encode = torch.mean(at_encode, dim=-1)   # (B, dim_h)
            prob_at_cls = self.classifier(at_encode)    # (B, 1)
            if self.args.label_size <= 2:
                pred_at_cls = (prob_at_cls.squeeze(1) >= 0).to(torch.long)
            else:
                pred_at_cls = torch.argmax(prob_at_cls, dim=-1)
            acc_at_cls = (pred_at_cls == sampled_cond_labels).float()

            # classifier on conditional generated sentences.
            cg_emb = self.gpt_embeddings(cg_generated)
            cg_encode = self.conv1(cg_emb.transpose(1, 2))    # (B, dim_h, seq_len)
            cg_encode = torch.mean(cg_encode, dim=-1)   # (B, dim_h)
            prob_cg_cls = self.classifier(cg_encode)    # (B, 1)
            if self.args.label_size <= 2:
                pred_cg_cls = (prob_cg_cls.squeeze(1) >= 0).to(torch.long)
            else:
                pred_cg_cls = torch.argmax(prob_cg_cls, dim=-1)
            acc_cg_cls = (pred_cg_cls == sampled_cond_labels).float()

            result = {
                    'sampled_cond_labels': sampled_cond_labels,
                    'cond_labels': cond_labels,

                    'tgt_seq_ids': tgt_seq_ids,
                    'generated': generated,
                    'at_generated': at_generated,
                    'cg_generated': cg_generated,

                    'acc_encode_z_dis': acc_encode_z_dis,
                    'acc_gen_z_dis': acc_gen_z_dis,
                    'acc_encode_z_cls': acc_encode_z_cls,
                    'acc_cls': acc_cls,
                    'acc_ge_cls': acc_ge_cls,
                    'acc_at_cls': acc_at_cls,
                    'acc_cg_cls': acc_cg_cls,

                    'pred_cls': pred_cls,
                    'pred_ge_cls': pred_ge_cls,
                    'pred_at_cls': pred_at_cls,
                    'pred_cg_cls': pred_cg_cls,
                    }

            return result

        loss_dict = {
                'loss': loss,
                'loss_rec': loss_rec,
                'loss_encoder': loss_encoder,
                'loss_lsc': loss_lsc,
                'loss_lsd': loss_lsd,
                'loss_lsg': loss_lsg,
                'loss_cls': loss_cls,
                # 'loss_at_soft_cls': loss_at_soft_cls,
        }
        acc_dict = {
                'acc_encode_z_dis': acc_encode_z_dis,
                'acc_gen_z_dis': acc_gen_z_dis,
                'acc_encode_z_cls': acc_encode_z_cls,
                'acc_cls': acc_cls,
                # 'acc_at_soft_cls': acc_at_soft_cls,
        }
        return loss_dict, acc_dict

    def sample_sequence_conditional_batch(self, past, context):
        # context: a single id of <BOS>
        # past: (B, past_seq_len dim_h)
        num_samples = past.size(0)
        context = torch.tensor(context, dtype=torch.long, device=past.device)
        context = context.unsqueeze(0).repeat(num_samples, 1)
        generated = context # (B, 1)

        # with torch.no_grad():
        while generated.size(-1) < self.args.block_size:
            inputs = {'input_ids': generated, 'past': past}
            outputs = self.decoder(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            lm_logits = outputs[0]

            # softmax sample
            next_tokens_logits = lm_logits[:, -1, :] / self.args.temperature  # (B, 1, vocab_size)
            filtered_logits = self.top_k_top_p_filtering_batch(next_tokens_logits, top_k=self.args.top_k, top_p=self.args.top_p)  # (B, 1, vocab_size)
            filtered_logits = F.softmax(filtered_logits, dim=-1)
            next_tokens = torch.multinomial(filtered_logits, num_samples=1)   # (B, 1)
            generated = torch.cat((generated, next_tokens), dim=1)  # (B, seq_len+1)

            not_finished = next_tokens != self.tokenizer_decoder.encode('<EOS>')[0]
            if torch.sum(not_finished) == 0:
                break

        return generated    # (B, seq_len)

    def top_k_top_p_filtering_batch(self, logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
        """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
            Args:
                logits: logits distribution shape (vocabulary size)
                top_k > 0: keep only top k tokens with highest probability (top-k filtering).
                top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                    Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
            From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
        """
        # assert logits.dim() == 1  # batch size 1 for now - could be updated for more but the code would be less clear

        top_k = min(top_k, logits.size(-1))  # Safety check

        if top_k > 0:
            # Remove all tokens with a probability less than the last token of the top-k
            threshold = torch.topk(logits, top_k, dim=-1)[0][:, -1, None]
            logits.masked_fill_(logits < threshold, filter_value)   #  (B, vocab_size)

        if top_p > 0.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)         # (B, vocab_size)
            cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)   # (B, vocab_size)

            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probs > top_p

            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            indices_to_remove = sorted_indices[sorted_indices_to_remove]

            logits.masked_fill_(indices_to_remove, filter_value)

        return logits

    def sample_sequence_conditional_batch_soft(self, past, context):
        # context: a single id of <BOS>
        # past: (B, past_seq_len dim_h)
        num_samples = past.size(0)
        context = torch.tensor(context, dtype=torch.long, device=past.device).unsqueeze(0).repeat(num_samples, 1)     # (B, 1)
        context_soft = torch.FloatTensor(num_samples, self.decoder.config.vocab_size).zero_().to(device=past.device)    # (B, vocab_size)
        context_soft.scatter_(1, context, 1)  # (B, vocab_size)
        generated_soft = context_soft.unsqueeze(1) # (B, 1, vocab_size)

        # with torch.no_grad():
        while generated_soft.size(1) < self.args.block_size:    # generated_soft: (B, seq_len, vocab_size)
            inputs = {'soft_ids': generated_soft, 'past': past}
            outputs = self.decoder(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            lm_logits = outputs[0]  # (B, seq_len, vocab_size)

            # Gumbel softmax sample
            next_tokens_soft = gumbel_softmax(logits=lm_logits[:, -1:, :], temperature=self.args.soft_temperature, hard=False)  # (B, 1, vocab_size)
            generated_soft = torch.cat((generated_soft, next_tokens_soft), dim=1)   # (B, seq_len+1, vocab_size)

            # # softmax sample
            # next_tokens_logits = lm_logits[:, -1, :] / self.args.temperature  # (B, 1, vocab_size)
            # filtered_logits = self.top_k_top_p_filtering_batch(next_tokens_logits, top_k=self.args.top_k, top_p=self.args.top_p)  # (B, 1, vocab_size)
            # filtered_logits = F.softmax(filtered_logits, dim=-1)
            # next_tokens = torch.multinomial(filtered_logits, num_samples=1)   # (B, 1)
            # generated = torch.cat((generated, next_tokens), dim=1)  # (B, seq_len+1)

            next_tokens = torch.argmax(next_tokens_soft, dim=-1)    # (B, 1)
            not_finished = next_tokens != self.tokenizer_decoder.encode('<EOS>')[0]
            if torch.sum(not_finished) == 0:
                break

        return generated_soft    # (B, seq_len, vocab_size)


### Gumbel Softmax
def gumbel_softmax(logits, temperature, hard=False):
    """Sample from the Gumbel-Softmax distribution and optionally discretize.
        Args:
            logits: [..., n_class] unnormalized log-probs
            temperature: non-negative scalar
            hard: if True, take argmax, but differentiate w.r.t. soft sample y
        Returns:
            [..., n_class] sample from the Gumbel-Softmax distribution.
            If hard=True, then the returned sample will be one-hot, otherwise it will be a probabilitiy distribution that sums to 1 across classes
    """
    y = gumbel_softmax_sample(logits, temperature)  # (..., n_class)

    if hard:    # return onehot
        shape = y.size()
        _, ind = y.max(dim=-1)
        y_hard = torch.zeros_like(y).view(-1, shape[-1])
        y_hard.scatter_(1, ind.view(-1, 1), 1)  # one hot
        y_hard = y_hard.view(*shape)
        # Set gradients w.r.t. y_hard gradients w.r.t. y
        y = (y_hard - y).detach() + y

    return y    # (..., n_class)

from torch.nn import functional as F
def gumbel_softmax_sample(logits, temperature):
    y = logits + sample_gumbel(logits.size(), logits.device)
    return F.softmax(y / temperature, dim=-1)

def sample_gumbel(shape, device, eps=1e-20):
    U = torch.rand(shape).to(device=device)
    return -torch.log(-torch.log(U + eps) + eps)