Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""PyTorch OpenAI GPT model.""" | |
from __future__ import absolute_import, division, print_function, unicode_literals | |
import collections | |
import json | |
import logging | |
import math | |
import os | |
import sys | |
from io import open | |
import torch | |
import torch.nn as nn | |
from torch.nn import CrossEntropyLoss | |
from torch.nn.parameter import Parameter | |
from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary | |
from .configuration_openai import OpenAIGPTConfig | |
from .file_utils import add_start_docstrings | |
logger = logging.getLogger(__name__) | |
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"} | |
def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path): | |
""" Load tf pre-trained weights in a pytorch model (from NumPy arrays here) | |
""" | |
import re | |
import numpy as np | |
if '.ckpt' in openai_checkpoint_folder_path: | |
openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path) | |
logger.info("Loading weights from {}".format(openai_checkpoint_folder_path)) | |
names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8')) | |
shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8')) | |
offsets = np.cumsum([np.prod(shape) for shape in shapes]) | |
init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)] | |
init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1] | |
init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)] | |
# This was used when we had a single embedding matrix for positions and tokens | |
# init_params[0] = np.concatenate([init_params[1], init_params[0]], 0) | |
# del init_params[1] | |
init_params = [arr.squeeze() for arr in init_params] | |
try: | |
assert model.tokens_embed.weight.shape == init_params[1].shape | |
assert model.positions_embed.weight.shape == init_params[0].shape | |
except AssertionError as e: | |
e.args += (model.tokens_embed.weight.shape, init_params[1].shape) | |
e.args += (model.positions_embed.weight.shape, init_params[0].shape) | |
raise | |
model.tokens_embed.weight.data = torch.from_numpy(init_params[1]) | |
model.positions_embed.weight.data = torch.from_numpy(init_params[0]) | |
names.pop(0) | |
# Pop position and token embedding arrays | |
init_params.pop(0) | |
init_params.pop(0) | |
for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]): | |
name = name[6:] # skip "model/" | |
assert name[-2:] == ":0" | |
name = name[:-2] | |
name = name.split('/') | |
pointer = model | |
for m_name in name: | |
if re.fullmatch(r'[A-Za-z]+\d+', m_name): | |
l = re.split(r'(\d+)', m_name) | |
else: | |
l = [m_name] | |
if l[0] == 'g': | |
pointer = getattr(pointer, 'weight') | |
elif l[0] == 'b': | |
pointer = getattr(pointer, 'bias') | |
elif l[0] == 'w': | |
pointer = getattr(pointer, 'weight') | |
else: | |
pointer = getattr(pointer, l[0]) | |
if len(l) >= 2: | |
num = int(l[1]) | |
pointer = pointer[num] | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
try: | |
assert pointer.shape == array.shape | |
except AssertionError as e: | |
e.args += (pointer.shape, array.shape) | |
raise | |
logger.info("Initialize PyTorch weight {}".format(name)) | |
pointer.data = torch.from_numpy(array) | |
return model | |
def gelu(x): | |
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
def swish(x): | |
return x * torch.sigmoid(x) | |
ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu} | |
class Attention(nn.Module): | |
def __init__(self, nx, n_ctx, config, scale=False): | |
super(Attention, self).__init__() | |
n_state = nx # in Attention: n_state=768 (nx=n_embd) | |
# [switch nx => n_state from Block to Attention to keep identical to TF implem] | |
assert n_state % config.n_head == 0 | |
self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)) | |
self.n_head = config.n_head | |
self.split_size = n_state | |
self.scale = scale | |
self.output_attentions = config.output_attentions | |
self.c_attn = Conv1D(n_state * 3, nx) | |
self.c_proj = Conv1D(n_state, nx) | |
self.attn_dropout = nn.Dropout(config.attn_pdrop) | |
self.resid_dropout = nn.Dropout(config.resid_pdrop) | |
self.pruned_heads = set() | |
def prune_heads(self, heads): | |
if len(heads) == 0: | |
return | |
mask = torch.ones(self.n_head, self.split_size // self.n_head) | |
heads = set(heads) - self.pruned_heads | |
for head in heads: | |
head -= sum(1 if h < head else 0 for h in self.pruned_heads) | |
mask[head] = 0 | |
mask = mask.view(-1).contiguous().eq(1) | |
index = torch.arange(len(mask))[mask].long() | |
index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)]) | |
# Prune conv1d layers | |
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1) | |
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0) | |
# Update hyper params | |
self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads)) | |
self.n_head = self.n_head - len(heads) | |
self.pruned_heads = self.pruned_heads.union(heads) | |
def _attn(self, q, k, v, attention_mask=None, head_mask=None): | |
w = torch.matmul(q, k) | |
if self.scale: | |
w = w / math.sqrt(v.size(-1)) | |
# w = w * self.bias + -1e9 * (1 - self.bias) # TF implem method: mask_attn_weights | |
# XD: self.b may be larger than w, so we need to crop it | |
b = self.bias[:, :, : w.size(-2), : w.size(-1)] | |
w = w * b + -1e9 * (1 - b) | |
if attention_mask is not None: | |
# Apply the attention mask | |
w = w + attention_mask | |
w = nn.Softmax(dim=-1)(w) | |
w = self.attn_dropout(w) | |
# Mask heads if we want to | |
if head_mask is not None: | |
w = w * head_mask | |
outputs = [torch.matmul(w, v)] | |
if self.output_attentions: | |
outputs.append(w) | |
return outputs | |
def merge_heads(self, x): | |
x = x.permute(0, 2, 1, 3).contiguous() | |
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),) | |
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states | |
def split_heads(self, x, k=False): | |
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head) | |
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states | |
if k: | |
return x.permute(0, 2, 3, 1) | |
else: | |
return x.permute(0, 2, 1, 3) | |
def forward(self, x, attention_mask=None, head_mask=None): | |
x = self.c_attn(x) | |
query, key, value = x.split(self.split_size, dim=2) | |
query = self.split_heads(query) | |
key = self.split_heads(key, k=True) | |
value = self.split_heads(value) | |
attn_outputs = self._attn(query, key, value, attention_mask, head_mask) | |
a = attn_outputs[0] | |
a = self.merge_heads(a) | |
a = self.c_proj(a) | |
a = self.resid_dropout(a) | |
outputs = [a] + attn_outputs[1:] | |
return outputs # a, (attentions) | |
class MLP(nn.Module): | |
def __init__(self, n_state, config): # in MLP: n_state=3072 (4 * n_embd) | |
super(MLP, self).__init__() | |
nx = config.n_embd | |
self.c_fc = Conv1D(n_state, nx) | |
self.c_proj = Conv1D(nx, n_state) | |
self.act = ACT_FNS[config.afn] | |
self.dropout = nn.Dropout(config.resid_pdrop) | |
def forward(self, x): | |
h = self.act(self.c_fc(x)) | |
h2 = self.c_proj(h) | |
return self.dropout(h2) | |
class Block(nn.Module): | |
def __init__(self, n_ctx, config, scale=False): | |
super(Block, self).__init__() | |
nx = config.n_embd | |
self.attn = Attention(nx, n_ctx, config, scale) | |
self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) | |
self.mlp = MLP(4 * nx, config) | |
self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon) | |
def forward(self, x, attention_mask=None, head_mask=None): | |
attn_outputs = self.attn(x, attention_mask=attention_mask, head_mask=head_mask) | |
a = attn_outputs[0] | |
n = self.ln_1(x + a) | |
m = self.mlp(n) | |
h = self.ln_2(n + m) | |
outputs = [h] + attn_outputs[1:] | |
return outputs | |
class OpenAIGPTPreTrainedModel(PreTrainedModel): | |
""" An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
config_class = OpenAIGPTConfig | |
pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP | |
load_tf_weights = load_tf_weights_in_openai_gpt | |
base_model_prefix = "transformer" | |
def _init_weights(self, module): | |
""" Initialize the weights. | |
""" | |
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None: | |
module.bias.data.zero_() | |
elif isinstance(module, nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
OPENAI_GPT_START_DOCSTRING = r""" OpenAI GPT model was proposed in | |
`Improving Language Understanding by Generative Pre-Training`_ | |
by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. | |
It's a causal (unidirectional) transformer pre-trained using language modeling on a large | |
corpus will long range dependencies, the Toronto Book Corpus. | |
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and | |
refer to the PyTorch documentation for all matter related to general usage and behavior. | |
.. _`Improving Language Understanding by Generative Pre-Training`: | |
https://openai.com/blog/language-unsupervised/ | |
.. _`torch.nn.Module`: | |
https://pytorch.org/docs/stable/nn.html#module | |
Parameters: | |
config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model. | |
Initializing with a config file does not load the weights associated with the model, only the configuration. | |
Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights. | |
""" | |
OPENAI_GPT_INPUTS_DOCSTRING = r""" Inputs: | |
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of input sequence tokens in the vocabulary. | |
GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on | |
the right rather than the left. | |
Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`. | |
See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and | |
:func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details. | |
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``: | |
Mask to avoid performing attention on padding token indices. | |
Mask values selected in ``[0, 1]``: | |
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens. | |
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
A parallel sequence of tokens (can be used to indicate various portions of the inputs). | |
The embeddings from these tokens will be summed with the respective token embeddings. | |
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices) | |
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Indices of positions of each input sequence tokens in the position embeddings. | |
Selected in the range ``[0, config.max_position_embeddings - 1]``. | |
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``: | |
Mask to nullify selected heads of the self-attention modules. | |
Mask values selected in ``[0, 1]``: | |
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**. | |
""" | |
class OpenAIGPTModel(OpenAIGPTPreTrainedModel): | |
r""" | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)`` | |
Sequence of hidden-states at the last layer of the model. | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') | |
model = OpenAIGPTModel.from_pretrained('openai-gpt') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids) | |
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple | |
""" | |
def __init__(self, config): | |
super(OpenAIGPTModel, self).__init__(config) | |
self.output_attentions = config.output_attentions | |
self.output_hidden_states = config.output_hidden_states | |
self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd) | |
self.positions_embed = nn.Embedding(config.n_positions, config.n_embd) | |
self.drop = nn.Dropout(config.embd_pdrop) | |
self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)]) | |
self.init_weights() | |
def _resize_token_embeddings(self, new_num_tokens): | |
self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens) | |
return self.tokens_embed | |
def _prune_heads(self, heads_to_prune): | |
""" Prunes heads of the model. | |
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
""" | |
for layer, heads in heads_to_prune.items(): | |
self.h[layer].attn.prune_heads(heads) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None): | |
if position_ids is None: | |
# This was used when we had a single embedding matrice from position and token embeddings | |
# start = self.config.vocab_size + self.config.n_special | |
# end = start + input_ids.size(-1) | |
# position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device) | |
position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device) | |
position_ids = position_ids.unsqueeze(0).expand_as(input_ids) | |
# Attention mask. | |
if attention_mask is not None: | |
# We create a 3D attention mask from a 2D tensor mask. | |
# Sizes are [batch_size, 1, 1, to_seq_length] | |
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
# this attention mask is more simple than the triangular masking of causal attention | |
# used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
# masked positions, this operation will create a tensor which is 0.0 for | |
# positions we want to attend and -10000.0 for masked positions. | |
# Since we are adding it to the raw scores before the softmax, this is | |
# effectively the same as removing these entirely. | |
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
attention_mask = (1.0 - attention_mask) * -10000.0 | |
# Prepare head mask if needed | |
# 1.0 in head_mask indicate we keep the head | |
# attention_probs has shape bsz x n_heads x N x N | |
# head_mask has shape n_layer x batch x n_heads x N x N | |
if head_mask is not None: | |
if head_mask.dim() == 1: | |
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1) | |
elif head_mask.dim() == 2: | |
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer | |
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
else: | |
head_mask = [None] * self.config.n_layer | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_ids.size(-1)) | |
position_ids = position_ids.view(-1, position_ids.size(-1)) | |
inputs_embeds = self.tokens_embed(input_ids) | |
position_embeds = self.positions_embed(position_ids) | |
if token_type_ids is not None: | |
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) | |
token_type_embeds = self.tokens_embed(token_type_ids) | |
else: | |
token_type_embeds = 0 | |
hidden_states = inputs_embeds + position_embeds + token_type_embeds | |
hidden_states = self.drop(hidden_states) | |
output_shape = input_shape + (hidden_states.size(-1),) | |
all_attentions = () | |
all_hidden_states = () | |
for i, block in enumerate(self.h): | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) | |
outputs = block(hidden_states, attention_mask, head_mask[i]) | |
hidden_states = outputs[0] | |
if self.output_attentions: | |
all_attentions = all_attentions + (outputs[1],) | |
# Add last layer | |
if self.output_hidden_states: | |
all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),) | |
outputs = (hidden_states.view(*output_shape),) | |
if self.output_hidden_states: | |
outputs = outputs + (all_hidden_states,) | |
if self.output_attentions: | |
outputs = outputs + (all_attentions,) | |
return outputs # last hidden state, (all hidden states), (all attentions) | |
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel): | |
r""" | |
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') | |
model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt') | |
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, labels=input_ids) | |
loss, logits = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(OpenAIGPTLMHeadModel, self).__init__(config) | |
self.transformer = OpenAIGPTModel(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.lm_head, | |
self.transformer.tokens_embed) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
outputs = (lm_logits,) + transformer_outputs[1:] | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (loss), lm_logits, (all hidden states), (all attentions) | |
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel): | |
r""" | |
**mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``: | |
Index of the classification token in each input sequence. | |
Selected in the range ``[0, input_ids.size(-1) - 1[``. | |
**lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``: | |
Labels for language modeling. | |
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids`` | |
Indices are selected in ``[-1, 0, ..., config.vocab_size]`` | |
All labels set to ``-1`` are ignored (masked), the loss is only | |
computed for labels in ``[0, ..., config.vocab_size]`` | |
**mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``: | |
Labels for computing the multiple choice classification loss. | |
Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension | |
of the input tensors. (see `input_ids` above) | |
`multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size] | |
with indices selected in [0, ..., num_choices]. | |
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs: | |
**lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Language modeling loss. | |
**mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: | |
Multiple choice classification loss. | |
**lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)`` | |
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). | |
**mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)`` | |
Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax). | |
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``) | |
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings) | |
of shape ``(batch_size, sequence_length, hidden_size)``: | |
Hidden-states of the model at the output of each layer plus the initial embedding outputs. | |
**attentions**: (`optional`, returned when ``config.output_attentions=True``) | |
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``: | |
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. | |
Examples:: | |
tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt') | |
model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt') | |
tokenizer.add_special_tokens({'cls_token': '[CLS]'}) # Add a [CLS] to the vocabulary (we should train it also!) | |
choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] | |
input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0) # Batch size 1, 2 choices | |
mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0) # Batch size 1 | |
outputs = model(input_ids, mc_token_ids=mc_token_ids) | |
lm_prediction_scores, mc_prediction_scores = outputs[:2] | |
""" | |
def __init__(self, config): | |
super(OpenAIGPTDoubleHeadsModel, self).__init__(config) | |
self.transformer = OpenAIGPTModel(config) | |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) | |
self.multiple_choice_head = SequenceSummary(config) | |
self.init_weights() | |
self.tie_weights() | |
def tie_weights(self): | |
""" Make sure we are sharing the input and output embeddings. | |
Export to TorchScript can't handle parameter sharing so we are cloning them instead. | |
""" | |
self._tie_or_clone_weights(self.lm_head, | |
self.transformer.tokens_embed) | |
def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
mc_token_ids=None, lm_labels=None, mc_labels=None): | |
transformer_outputs = self.transformer(input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
position_ids=position_ids, | |
head_mask=head_mask) | |
hidden_states = transformer_outputs[0] | |
lm_logits = self.lm_head(hidden_states) | |
mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1) | |
outputs = (lm_logits, mc_logits) + transformer_outputs[1:] | |
if mc_labels is not None: | |
loss_fct = CrossEntropyLoss() | |
loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), | |
mc_labels.view(-1)) | |
outputs = (loss,) + outputs | |
if lm_labels is not None: | |
shift_logits = lm_logits[..., :-1, :].contiguous() | |
shift_labels = lm_labels[..., 1:].contiguous() | |
loss_fct = CrossEntropyLoss(ignore_index=-1) | |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), | |
shift_labels.view(-1)) | |
outputs = (loss,) + outputs | |
return outputs # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions) | |