File size: 30,875 Bytes
c5ca37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch OpenAI GPT model."""

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import math
import os
import sys
from io import open

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from torch.nn.parameter import Parameter

from .modeling_utils import PreTrainedModel, Conv1D, prune_conv1d_layer, SequenceSummary
from .configuration_openai import OpenAIGPTConfig
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)

OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP = {"openai-gpt": "https://s3.amazonaws.com/models.huggingface.co/bert/openai-gpt-pytorch_model.bin"}


def load_tf_weights_in_openai_gpt(model, config, openai_checkpoint_folder_path):
    """ Load tf pre-trained weights in a pytorch model (from NumPy arrays here)
    """
    import re
    import numpy as np

    if '.ckpt' in openai_checkpoint_folder_path:
        openai_checkpoint_folder_path = os.path.dirname(openai_checkpoint_folder_path)

    logger.info("Loading weights from {}".format(openai_checkpoint_folder_path))

    names = json.load(open(openai_checkpoint_folder_path + '/parameters_names.json', "r", encoding='utf-8'))
    shapes = json.load(open(openai_checkpoint_folder_path + '/params_shapes.json', "r", encoding='utf-8'))
    offsets = np.cumsum([np.prod(shape) for shape in shapes])
    init_params = [np.load(openai_checkpoint_folder_path + '/params_{}.npy'.format(n)) for n in range(10)]
    init_params = np.split(np.concatenate(init_params, 0), offsets)[:-1]
    init_params = [param.reshape(shape) for param, shape in zip(init_params, shapes)]

    # This was used when we had a single embedding matrix for positions and tokens
    # init_params[0] = np.concatenate([init_params[1], init_params[0]], 0)
    # del init_params[1]
    init_params = [arr.squeeze() for arr in init_params]

    try:
        assert model.tokens_embed.weight.shape == init_params[1].shape
        assert model.positions_embed.weight.shape == init_params[0].shape
    except AssertionError as e:
        e.args += (model.tokens_embed.weight.shape, init_params[1].shape)
        e.args += (model.positions_embed.weight.shape, init_params[0].shape)
        raise

    model.tokens_embed.weight.data = torch.from_numpy(init_params[1])
    model.positions_embed.weight.data = torch.from_numpy(init_params[0])
    names.pop(0)
    # Pop position and token embedding arrays
    init_params.pop(0)
    init_params.pop(0)

    for name, array in zip(names, init_params): # names[1:n_transfer], init_params[1:n_transfer]):
        name = name[6:]  # skip "model/"
        assert name[-2:] == ":0"
        name = name[:-2]
        name = name.split('/')
        pointer = model
        for m_name in name:
            if re.fullmatch(r'[A-Za-z]+\d+', m_name):
                l = re.split(r'(\d+)', m_name)
            else:
                l = [m_name]
            if l[0] == 'g':
                pointer = getattr(pointer, 'weight')
            elif l[0] == 'b':
                pointer = getattr(pointer, 'bias')
            elif l[0] == 'w':
                pointer = getattr(pointer, 'weight')
            else:
                pointer = getattr(pointer, l[0])
            if len(l) >= 2:
                num = int(l[1])
                pointer = pointer[num]
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
        logger.info("Initialize PyTorch weight {}".format(name))
        pointer.data = torch.from_numpy(array)
    return model


def gelu(x):
    return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))


def swish(x):
    return x * torch.sigmoid(x)


ACT_FNS = {"relu": nn.ReLU, "swish": swish, "gelu": gelu}


class Attention(nn.Module):
    def __init__(self, nx, n_ctx, config, scale=False):
        super(Attention, self).__init__()
        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
        self.register_buffer("bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx))
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

        self.output_attentions = config.output_attentions

        self.c_attn = Conv1D(n_state * 3, nx)
        self.c_proj = Conv1D(n_state, nx)
        self.attn_dropout = nn.Dropout(config.attn_pdrop)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        mask = torch.ones(self.n_head, self.split_size // self.n_head)
        heads = set(heads) - self.pruned_heads
        for head in heads:
            head -= sum(1 if h < head else 0 for h in self.pruned_heads)
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
        index_attn = torch.cat([index, index + self.split_size, index + (2*self.split_size)])
        # Prune conv1d layers
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
        # Update hyper params
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
        self.pruned_heads = self.pruned_heads.union(heads)

    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
        w = torch.matmul(q, k)
        if self.scale:
            w = w / math.sqrt(v.size(-1))
        # w = w * self.bias + -1e9 * (1 - self.bias)  # TF implem method: mask_attn_weights
        # XD: self.b may be larger than w, so we need to crop it
        b = self.bias[:, :, : w.size(-2), : w.size(-1)]
        w = w * b + -1e9 * (1 - b)

        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

        w = nn.Softmax(dim=-1)(w)
        w = self.attn_dropout(w)

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

        outputs = [torch.matmul(w, v)]
        if self.output_attentions:
            outputs.append(w)
        return outputs

    def merge_heads(self, x):
        x = x.permute(0, 2, 1, 3).contiguous()
        new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
        return x.view(*new_x_shape)  # in Tensorflow implem: fct merge_states

    def split_heads(self, x, k=False):
        new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
        x = x.view(*new_x_shape)  # in Tensorflow implem: fct split_states
        if k:
            return x.permute(0, 2, 3, 1)
        else:
            return x.permute(0, 2, 1, 3)

    def forward(self, x, attention_mask=None, head_mask=None):
        x = self.c_attn(x)
        query, key, value = x.split(self.split_size, dim=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)

        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)

        outputs = [a] + attn_outputs[1:]
        return outputs  # a, (attentions)


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
        self.c_fc = Conv1D(n_state, nx)
        self.c_proj = Conv1D(nx, n_state)
        self.act = ACT_FNS[config.afn]
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


class Block(nn.Module):
    def __init__(self, n_ctx, config, scale=False):
        super(Block, self).__init__()
        nx = config.n_embd
        self.attn = Attention(nx, n_ctx, config, scale)
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)

    def forward(self, x, attention_mask=None, head_mask=None):
        attn_outputs = self.attn(x, attention_mask=attention_mask, head_mask=head_mask)
        a = attn_outputs[0]

        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)

        outputs = [h] + attn_outputs[1:]
        return outputs


class OpenAIGPTPreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = OpenAIGPTConfig
    pretrained_model_archive_map = OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_openai_gpt
    base_model_prefix = "transformer"

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


OPENAI_GPT_START_DOCSTRING = r"""    OpenAI GPT model was proposed in
    `Improving Language Understanding by Generative Pre-Training`_
    by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
    It's a causal (unidirectional) transformer pre-trained using language modeling on a large
    corpus will long range dependencies, the Toronto Book Corpus.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Improving Language Understanding by Generative Pre-Training`:
        https://openai.com/blog/language-unsupervised/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~pytorch_transformers.OpenAIGPTConfig`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

OPENAI_GPT_INPUTS_DOCSTRING = r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices)
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare OpenAI GPT transformer model outputting raw hidden-states without any specific head on top.",
                      OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
class OpenAIGPTModel(OpenAIGPTPreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config):
        super(OpenAIGPTModel, self).__init__(config)
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states

        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])

        self.init_weights()

    def _resize_token_embeddings(self, new_num_tokens):
        self.tokens_embed = self._get_resized_embeddings(self.tokens_embed, new_num_tokens)
        return self.tokens_embed

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
        if position_ids is None:
            # This was used when we had a single embedding matrice from position and token embeddings
            # start = self.config.vocab_size + self.config.n_special
            # end = start + input_ids.size(-1)
            # position_ids = torch.arange(start, end, dtype=torch.long, device=input_ids.device)
            position_ids = torch.arange(input_ids.size(-1), dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        # Attention mask.
        if attention_mask is not None:
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
            attention_mask = (1.0 - attention_mask) * -10000.0

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.n_layer

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.tokens_embed(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        all_attentions = ()
        all_hidden_states = ()
        for i, block in enumerate(self.h):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)

            outputs = block(hidden_states, attention_mask, head_mask[i])
            hidden_states = outputs[0]
            if self.output_attentions:
                all_attentions = all_attentions + (outputs[1],)

        # Add last layer
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)

        outputs = (hidden_states.view(*output_shape),)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, (all hidden states), (all attentions)


@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
class OpenAIGPTLMHeadModel(OpenAIGPTPreTrainedModel):
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]

    """
    def __init__(self, config):
        super(OpenAIGPTLMHeadModel, self).__init__(config)
        self.transformer = OpenAIGPTModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)

    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               head_mask=head_mask)
        hidden_states = transformer_outputs[0]
        lm_logits = self.lm_head(hidden_states)

        outputs = (lm_logits,) + transformer_outputs[1:]
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), lm_logits, (all hidden states), (all attentions)


@add_start_docstrings("""OpenAI GPT Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the input sequence).
""", OPENAI_GPT_START_DOCSTRING, OPENAI_GPT_INPUTS_DOCSTRING)
class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
    r"""
        **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

            `multiple_choice_labels`: optional multiple choice labels: ``torch.LongTensor`` of shape [batch_size]
                with indices selected in [0, ..., num_choices].

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = OpenAIGPTTokenizer.from_pretrained('openai-gpt')
        model = OpenAIGPTDoubleHeadsModel.from_pretrained('openai-gpt')
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})  # Add a [CLS] to the vocabulary (we should train it also!)
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
        input_ids = torch.tensor([tokenizer.encode(s) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        mc_token_ids = torch.tensor([input_ids.size(-1), input_ids.size(-1)]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, mc_token_ids=mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]

    """
    def __init__(self, config):
        super(OpenAIGPTDoubleHeadsModel, self).__init__(config)

        self.transformer = OpenAIGPTModel(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.multiple_choice_head = SequenceSummary(config)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.tokens_embed)

    def forward(self, input_ids, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
                mc_token_ids=None, lm_labels=None, mc_labels=None):
        transformer_outputs = self.transformer(input_ids,
                                               attention_mask=attention_mask,
                                               token_type_ids=token_type_ids,
                                               position_ids=position_ids,
                                               head_mask=head_mask)
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)

        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
            outputs = (loss,) + outputs
        if lm_labels is not None:
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, (all hidden_states), (attentions)