|
import torch.nn as nn
|
|
import torch
|
|
import torch.nn.init as init
|
|
|
|
|
|
class Swish(nn.Module):
|
|
def __init__():
|
|
super().__init__()
|
|
|
|
def forward(self, x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
class ResConv1DBlock(nn.Module):
|
|
def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
|
|
super().__init__()
|
|
|
|
|
|
padding = dilation
|
|
|
|
|
|
self.dropout = dropout
|
|
|
|
|
|
self.norm = norm
|
|
if norm == "LN":
|
|
self.norm1 = nn.LayerNorm(n_in)
|
|
self.norm2 = nn.LayerNorm(n_in)
|
|
elif norm == "GN":
|
|
self.norm1 = nn.GroupNorm(32, n_in)
|
|
self.norm2 = nn.GroupNorm(32, n_in)
|
|
elif norm == "BN":
|
|
self.norm1 = nn.BatchNorm1d(n_in)
|
|
self.norm2 = nn.BatchNorm1d(n_in)
|
|
else:
|
|
self.norm1 = nn.Identity()
|
|
self.norm2 = nn.Identity()
|
|
|
|
|
|
if activation == "relu":
|
|
self.activation1 = nn.ReLU()
|
|
self.activation2 = nn.ReLU()
|
|
elif activation == "silu":
|
|
self.activation1 = Swish()
|
|
self.activation2 = Swish()
|
|
elif activation == "gelu":
|
|
self.activation1 = nn.GELU()
|
|
self.activation2 = nn.GELU()
|
|
else:
|
|
raise ValueError("Unsupported activation type")
|
|
|
|
|
|
self.conv1 = nn.Conv1d(n_in, n_state, 3, padding=padding, dilation=dilation)
|
|
self.conv_skip = nn.Conv1d(n_state, n_state, 1, stride=1, padding=0)
|
|
self.conv2 = nn.Conv1d(n_state, n_in, 1, padding=0)
|
|
|
|
|
|
if self.dropout:
|
|
self.drop = nn.Dropout(dropout)
|
|
|
|
|
|
init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
|
|
init.kaiming_normal_(self.conv_skip.weight, nonlinearity='relu')
|
|
init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
|
|
|
|
def forward(self, x):
|
|
x_orig = x
|
|
|
|
|
|
if self.norm == "LN":
|
|
x = self.norm1(x.transpose(-2, -1)).transpose(-2, -1)
|
|
else:
|
|
x = self.norm1(x)
|
|
|
|
x = self.activation1(x)
|
|
|
|
|
|
x = self.conv1(x)
|
|
|
|
|
|
if self.dropout:
|
|
x = self.drop(x)
|
|
|
|
|
|
skip = self.conv_skip(x)
|
|
|
|
|
|
if self.norm == "LN":
|
|
skip = self.norm2(skip.transpose(-2, -1)).transpose(-2, -1)
|
|
else:
|
|
skip = self.norm2(skip)
|
|
|
|
skip = self.activation2(skip)
|
|
|
|
|
|
x = self.conv2(skip)
|
|
|
|
|
|
x = x + x_orig
|
|
|
|
return x
|
|
|
|
|
|
|
|
class Resnet1D(nn.Module):
|
|
def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None, dropout=None):
|
|
super().__init__()
|
|
|
|
|
|
blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm, dropout=dropout) for depth in range(n_depth)]
|
|
|
|
if reverse_dilation:
|
|
blocks = blocks[::-1]
|
|
|
|
self.model = nn.Sequential(*blocks)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|