Upload 14 files
Browse files- models/encdec.py +67 -0
- models/encdec_imp.py +113 -0
- models/evaluator_wrapper.py +92 -0
- models/modules.py +109 -0
- models/pos_encoding.py +43 -0
- models/quantize_cnn.py +413 -0
- models/resnet.py +82 -0
- models/resnet_imp.py +112 -0
- models/resnet_imp_1.py +118 -0
- models/rotation2xyz.py +92 -0
- models/smpl.py +97 -0
- models/t2m_trans.py +211 -0
- models/vqvae.py +118 -0
- models/vqvae_imp.py +118 -0
models/encdec.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.resnet import Resnet1D
|
3 |
+
|
4 |
+
class Encoder(nn.Module):
|
5 |
+
def __init__(self,
|
6 |
+
input_emb_width = 3,
|
7 |
+
output_emb_width = 512,
|
8 |
+
down_t = 3,
|
9 |
+
stride_t = 2,
|
10 |
+
width = 512,
|
11 |
+
depth = 3,
|
12 |
+
dilation_growth_rate = 3,
|
13 |
+
activation='relu',
|
14 |
+
norm=None):
|
15 |
+
super().__init__()
|
16 |
+
|
17 |
+
blocks = []
|
18 |
+
filter_t, pad_t = stride_t * 2, stride_t // 2
|
19 |
+
blocks.append(nn.Conv1d(input_emb_width, width, 3, 1, 1))
|
20 |
+
blocks.append(nn.ReLU())
|
21 |
+
|
22 |
+
for i in range(down_t):
|
23 |
+
input_dim = width
|
24 |
+
block = nn.Sequential(
|
25 |
+
nn.Conv1d(input_dim, width, filter_t, stride_t, pad_t),
|
26 |
+
Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm),
|
27 |
+
)
|
28 |
+
blocks.append(block)
|
29 |
+
blocks.append(nn.Conv1d(width, output_emb_width, 3, 1, 1))
|
30 |
+
self.model = nn.Sequential(*blocks)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.model(x)
|
34 |
+
|
35 |
+
class Decoder(nn.Module):
|
36 |
+
def __init__(self,
|
37 |
+
input_emb_width = 3,
|
38 |
+
output_emb_width = 512,
|
39 |
+
down_t = 3,
|
40 |
+
stride_t = 2,
|
41 |
+
width = 512,
|
42 |
+
depth = 3,
|
43 |
+
dilation_growth_rate = 3,
|
44 |
+
activation='relu',
|
45 |
+
norm=None):
|
46 |
+
super().__init__()
|
47 |
+
blocks = []
|
48 |
+
|
49 |
+
filter_t, pad_t = stride_t * 2, stride_t // 2
|
50 |
+
blocks.append(nn.Conv1d(output_emb_width, width, 3, 1, 1))
|
51 |
+
blocks.append(nn.ReLU())
|
52 |
+
for i in range(down_t):
|
53 |
+
out_dim = width
|
54 |
+
block = nn.Sequential(
|
55 |
+
Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
|
56 |
+
nn.Upsample(scale_factor=2, mode='nearest'),
|
57 |
+
nn.Conv1d(width, out_dim, 3, 1, 1)
|
58 |
+
)
|
59 |
+
blocks.append(block)
|
60 |
+
blocks.append(nn.Conv1d(width, width, 3, 1, 1))
|
61 |
+
blocks.append(nn.ReLU())
|
62 |
+
blocks.append(nn.Conv1d(width, input_emb_width, 3, 1, 1))
|
63 |
+
self.model = nn.Sequential(*blocks)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
return self.model(x)
|
67 |
+
|
models/encdec_imp.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from models.resnet_imp import Resnet1D
|
4 |
+
import math
|
5 |
+
|
6 |
+
|
7 |
+
class SEBlock(nn.Module):
|
8 |
+
"""Squeeze-and-Excitation Block"""
|
9 |
+
def __init__(self, channel, reduction=16):
|
10 |
+
super().__init__()
|
11 |
+
self.sequential = nn.Sequential(
|
12 |
+
nn.AdaptiveAvgPool1d(1),
|
13 |
+
nn.Conv1d(channel, channel // reduction, 1, bias=False),
|
14 |
+
nn.ReLU(inplace=True),
|
15 |
+
nn.Conv1d(channel // reduction, channel, 1, bias=False),
|
16 |
+
nn.Sigmoid()
|
17 |
+
)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
scale = self.sequential(x)
|
21 |
+
return x * scale
|
22 |
+
|
23 |
+
|
24 |
+
class Encoder(nn.Module):
|
25 |
+
def __init__(self,
|
26 |
+
input_emb_width=3,
|
27 |
+
output_emb_width=512,
|
28 |
+
down_t=3,
|
29 |
+
stride_t=2,
|
30 |
+
width=512,
|
31 |
+
depth=3,
|
32 |
+
dilation_growth_rate=3,
|
33 |
+
activation='relu',
|
34 |
+
norm=None,
|
35 |
+
dropout=0.1):
|
36 |
+
super().__init__()
|
37 |
+
|
38 |
+
self.dropout = dropout
|
39 |
+
|
40 |
+
blocks = []
|
41 |
+
|
42 |
+
# First layer with normalization and optional dropout
|
43 |
+
blocks.append(nn.Conv1d(input_emb_width, width, 3, padding=1))
|
44 |
+
blocks.append(nn.BatchNorm1d(width))
|
45 |
+
blocks.append(nn.ReLU())
|
46 |
+
blocks.append(nn.Dropout(dropout))
|
47 |
+
|
48 |
+
# Downsampling layers with SE blocks
|
49 |
+
filter_t, pad_t = stride_t * 2, stride_t // 2
|
50 |
+
for _ in range(down_t):
|
51 |
+
block = nn.Sequential(
|
52 |
+
nn.Conv1d(width, width, filter_t, stride_t, pad_t),
|
53 |
+
nn.BatchNorm1d(width),
|
54 |
+
nn.ReLU(),
|
55 |
+
SEBlock(width),
|
56 |
+
Resnet1D(width, depth, dilation_growth_rate, activation=activation, norm=norm, dropout=dropout)
|
57 |
+
)
|
58 |
+
blocks.append(block)
|
59 |
+
|
60 |
+
# Final layer with optional dropout
|
61 |
+
blocks.append(nn.Conv1d(width, output_emb_width, 3, padding=1))
|
62 |
+
blocks.append(nn.Dropout(dropout))
|
63 |
+
|
64 |
+
self.model = nn.Sequential(*blocks)
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
return self.model(x)
|
68 |
+
|
69 |
+
|
70 |
+
class Decoder(nn.Module):
|
71 |
+
def __init__(self,
|
72 |
+
input_emb_width=3,
|
73 |
+
output_emb_width=512,
|
74 |
+
down_t=3,
|
75 |
+
stride_t=2,
|
76 |
+
width=512,
|
77 |
+
depth=3,
|
78 |
+
dilation_growth_rate=3,
|
79 |
+
activation='relu',
|
80 |
+
norm=None,
|
81 |
+
dropout=0.1):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.dropout = dropout
|
85 |
+
|
86 |
+
blocks = []
|
87 |
+
|
88 |
+
# First layer with normalization
|
89 |
+
blocks.append(nn.Conv1d(output_emb_width, width, 3, padding=1))
|
90 |
+
blocks.append(nn.BatchNorm1d(width))
|
91 |
+
blocks.append(nn.ReLU())
|
92 |
+
blocks.append(nn.Dropout(dropout))
|
93 |
+
|
94 |
+
# Upsampling layers with residual connections
|
95 |
+
for _ in range(down_t):
|
96 |
+
block = nn.Sequential(
|
97 |
+
SEBlock(width),
|
98 |
+
Resnet1D(width, depth, dilation_growth_rate, reverse_dilation=True, activation=activation, norm=norm),
|
99 |
+
nn.BatchNorm1d(width),
|
100 |
+
nn.ReLU(),
|
101 |
+
nn.Upsample(scale_factor=2, mode='nearest'),
|
102 |
+
nn.Conv1d(width, width, 3, padding=1),
|
103 |
+
nn.Dropout(dropout)
|
104 |
+
)
|
105 |
+
blocks.append(block)
|
106 |
+
|
107 |
+
# Final reconstruction layers
|
108 |
+
blocks.append(nn.Conv1d(width, input_emb_width, 3, padding=1))
|
109 |
+
|
110 |
+
self.model = nn.Sequential(*blocks)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
return self.model(x)
|
models/evaluator_wrapper.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from os.path import join as pjoin
|
4 |
+
import numpy as np
|
5 |
+
from models.modules import MovementConvEncoder, TextEncoderBiGRUCo, MotionEncoderBiGRUCo
|
6 |
+
from utils.word_vectorizer import POS_enumerator
|
7 |
+
|
8 |
+
def build_models(opt):
|
9 |
+
movement_enc = MovementConvEncoder(opt.dim_pose-4, opt.dim_movement_enc_hidden, opt.dim_movement_latent)
|
10 |
+
text_enc = TextEncoderBiGRUCo(word_size=opt.dim_word,
|
11 |
+
pos_size=opt.dim_pos_ohot,
|
12 |
+
hidden_size=opt.dim_text_hidden,
|
13 |
+
output_size=opt.dim_coemb_hidden,
|
14 |
+
device=opt.device)
|
15 |
+
|
16 |
+
motion_enc = MotionEncoderBiGRUCo(input_size=opt.dim_movement_latent,
|
17 |
+
hidden_size=opt.dim_motion_hidden,
|
18 |
+
output_size=opt.dim_coemb_hidden,
|
19 |
+
device=opt.device)
|
20 |
+
|
21 |
+
checkpoint = torch.load(pjoin(opt.checkpoints_dir, opt.dataset_name, 'text_mot_match', 'model', 'finest.tar'),
|
22 |
+
map_location=opt.device)
|
23 |
+
movement_enc.load_state_dict(checkpoint['movement_encoder'])
|
24 |
+
text_enc.load_state_dict(checkpoint['text_encoder'])
|
25 |
+
motion_enc.load_state_dict(checkpoint['motion_encoder'])
|
26 |
+
print('Loading Evaluation Model Wrapper (Epoch %d) Completed!!' % (checkpoint['epoch']))
|
27 |
+
return text_enc, motion_enc, movement_enc
|
28 |
+
|
29 |
+
|
30 |
+
class EvaluatorModelWrapper(object):
|
31 |
+
|
32 |
+
def __init__(self, opt):
|
33 |
+
|
34 |
+
if opt.dataset_name == 't2m':
|
35 |
+
opt.dim_pose = 263
|
36 |
+
elif opt.dataset_name == 'kit':
|
37 |
+
opt.dim_pose = 251
|
38 |
+
else:
|
39 |
+
raise KeyError('Dataset not Recognized!!!')
|
40 |
+
|
41 |
+
opt.dim_word = 300
|
42 |
+
opt.max_motion_length = 196
|
43 |
+
opt.dim_pos_ohot = len(POS_enumerator)
|
44 |
+
opt.dim_motion_hidden = 1024
|
45 |
+
opt.max_text_len = 20
|
46 |
+
opt.dim_text_hidden = 512
|
47 |
+
opt.dim_coemb_hidden = 512
|
48 |
+
|
49 |
+
# print(opt)
|
50 |
+
|
51 |
+
self.text_encoder, self.motion_encoder, self.movement_encoder = build_models(opt)
|
52 |
+
self.opt = opt
|
53 |
+
self.device = opt.device
|
54 |
+
|
55 |
+
self.text_encoder.to(opt.device)
|
56 |
+
self.motion_encoder.to(opt.device)
|
57 |
+
self.movement_encoder.to(opt.device)
|
58 |
+
|
59 |
+
self.text_encoder.eval()
|
60 |
+
self.motion_encoder.eval()
|
61 |
+
self.movement_encoder.eval()
|
62 |
+
|
63 |
+
# Please note that the results does not following the order of inputs
|
64 |
+
def get_co_embeddings(self, word_embs, pos_ohot, cap_lens, motions, m_lens):
|
65 |
+
with torch.no_grad():
|
66 |
+
word_embs = word_embs.detach().to(self.device).float()
|
67 |
+
pos_ohot = pos_ohot.detach().to(self.device).float()
|
68 |
+
motions = motions.detach().to(self.device).float()
|
69 |
+
|
70 |
+
'''Movement Encoding'''
|
71 |
+
movements = self.movement_encoder(motions[..., :-4]).detach()
|
72 |
+
m_lens = m_lens // self.opt.unit_length
|
73 |
+
motion_embedding = self.motion_encoder(movements, m_lens)
|
74 |
+
|
75 |
+
'''Text Encoding'''
|
76 |
+
text_embedding = self.text_encoder(word_embs, pos_ohot, cap_lens)
|
77 |
+
return text_embedding, motion_embedding
|
78 |
+
|
79 |
+
# Please note that the results does not following the order of inputs
|
80 |
+
def get_motion_embeddings(self, motions, m_lens):
|
81 |
+
with torch.no_grad():
|
82 |
+
motions = motions.detach().to(self.device).float()
|
83 |
+
|
84 |
+
align_idx = np.argsort(m_lens.data.tolist())[::-1].copy()
|
85 |
+
motions = motions[align_idx]
|
86 |
+
m_lens = m_lens[align_idx]
|
87 |
+
|
88 |
+
'''Movement Encoding'''
|
89 |
+
movements = self.movement_encoder(motions[..., :-4]).detach()
|
90 |
+
m_lens = m_lens // self.opt.unit_length
|
91 |
+
motion_embedding = self.motion_encoder(movements, m_lens)
|
92 |
+
return motion_embedding
|
models/modules.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn.utils.rnn import pack_padded_sequence
|
4 |
+
|
5 |
+
def init_weight(m):
|
6 |
+
if isinstance(m, nn.Conv1d) or isinstance(m, nn.Linear) or isinstance(m, nn.ConvTranspose1d):
|
7 |
+
nn.init.xavier_normal_(m.weight)
|
8 |
+
# m.bias.data.fill_(0.01)
|
9 |
+
if m.bias is not None:
|
10 |
+
nn.init.constant_(m.bias, 0)
|
11 |
+
|
12 |
+
|
13 |
+
class MovementConvEncoder(nn.Module):
|
14 |
+
def __init__(self, input_size, hidden_size, output_size):
|
15 |
+
super(MovementConvEncoder, self).__init__()
|
16 |
+
self.main = nn.Sequential(
|
17 |
+
nn.Conv1d(input_size, hidden_size, 4, 2, 1),
|
18 |
+
nn.Dropout(0.2, inplace=True),
|
19 |
+
nn.LeakyReLU(0.2, inplace=True),
|
20 |
+
nn.Conv1d(hidden_size, output_size, 4, 2, 1),
|
21 |
+
nn.Dropout(0.2, inplace=True),
|
22 |
+
nn.LeakyReLU(0.2, inplace=True),
|
23 |
+
)
|
24 |
+
self.out_net = nn.Linear(output_size, output_size)
|
25 |
+
self.main.apply(init_weight)
|
26 |
+
self.out_net.apply(init_weight)
|
27 |
+
|
28 |
+
def forward(self, inputs):
|
29 |
+
inputs = inputs.permute(0, 2, 1)
|
30 |
+
outputs = self.main(inputs).permute(0, 2, 1)
|
31 |
+
# print(outputs.shape)
|
32 |
+
return self.out_net(outputs)
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
class TextEncoderBiGRUCo(nn.Module):
|
37 |
+
def __init__(self, word_size, pos_size, hidden_size, output_size, device):
|
38 |
+
super(TextEncoderBiGRUCo, self).__init__()
|
39 |
+
self.device = device
|
40 |
+
|
41 |
+
self.pos_emb = nn.Linear(pos_size, word_size)
|
42 |
+
self.input_emb = nn.Linear(word_size, hidden_size)
|
43 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
44 |
+
self.output_net = nn.Sequential(
|
45 |
+
nn.Linear(hidden_size * 2, hidden_size),
|
46 |
+
nn.LayerNorm(hidden_size),
|
47 |
+
nn.LeakyReLU(0.2, inplace=True),
|
48 |
+
nn.Linear(hidden_size, output_size)
|
49 |
+
)
|
50 |
+
|
51 |
+
self.input_emb.apply(init_weight)
|
52 |
+
self.pos_emb.apply(init_weight)
|
53 |
+
self.output_net.apply(init_weight)
|
54 |
+
self.hidden_size = hidden_size
|
55 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
56 |
+
|
57 |
+
# input(batch_size, seq_len, dim)
|
58 |
+
def forward(self, word_embs, pos_onehot, cap_lens):
|
59 |
+
num_samples = word_embs.shape[0]
|
60 |
+
|
61 |
+
pos_embs = self.pos_emb(pos_onehot)
|
62 |
+
inputs = word_embs + pos_embs
|
63 |
+
input_embs = self.input_emb(inputs)
|
64 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
65 |
+
|
66 |
+
cap_lens = cap_lens.data.tolist()
|
67 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True)
|
68 |
+
|
69 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
70 |
+
|
71 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
72 |
+
|
73 |
+
return self.output_net(gru_last)
|
74 |
+
|
75 |
+
|
76 |
+
class MotionEncoderBiGRUCo(nn.Module):
|
77 |
+
def __init__(self, input_size, hidden_size, output_size, device):
|
78 |
+
super(MotionEncoderBiGRUCo, self).__init__()
|
79 |
+
self.device = device
|
80 |
+
|
81 |
+
self.input_emb = nn.Linear(input_size, hidden_size)
|
82 |
+
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
|
83 |
+
self.output_net = nn.Sequential(
|
84 |
+
nn.Linear(hidden_size*2, hidden_size),
|
85 |
+
nn.LayerNorm(hidden_size),
|
86 |
+
nn.LeakyReLU(0.2, inplace=True),
|
87 |
+
nn.Linear(hidden_size, output_size)
|
88 |
+
)
|
89 |
+
|
90 |
+
self.input_emb.apply(init_weight)
|
91 |
+
self.output_net.apply(init_weight)
|
92 |
+
self.hidden_size = hidden_size
|
93 |
+
self.hidden = nn.Parameter(torch.randn((2, 1, self.hidden_size), requires_grad=True))
|
94 |
+
|
95 |
+
# input(batch_size, seq_len, dim)
|
96 |
+
def forward(self, inputs, m_lens):
|
97 |
+
num_samples = inputs.shape[0]
|
98 |
+
|
99 |
+
input_embs = self.input_emb(inputs)
|
100 |
+
hidden = self.hidden.repeat(1, num_samples, 1)
|
101 |
+
|
102 |
+
cap_lens = m_lens.data.tolist()
|
103 |
+
emb = pack_padded_sequence(input_embs, cap_lens, batch_first=True, enforce_sorted=False)
|
104 |
+
|
105 |
+
gru_seq, gru_last = self.gru(emb, hidden)
|
106 |
+
|
107 |
+
gru_last = torch.cat([gru_last[0], gru_last[1]], dim=-1)
|
108 |
+
|
109 |
+
return self.output_net(gru_last)
|
models/pos_encoding.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various positional encodings for the transformer.
|
3 |
+
"""
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
def PE1d_sincos(seq_length, dim):
|
9 |
+
"""
|
10 |
+
:param d_model: dimension of the model
|
11 |
+
:param length: length of positions
|
12 |
+
:return: length*d_model position matrix
|
13 |
+
"""
|
14 |
+
if dim % 2 != 0:
|
15 |
+
raise ValueError("Cannot use sin/cos positional encoding with "
|
16 |
+
"odd dim (got dim={:d})".format(dim))
|
17 |
+
pe = torch.zeros(seq_length, dim)
|
18 |
+
position = torch.arange(0, seq_length).unsqueeze(1)
|
19 |
+
div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *
|
20 |
+
-(math.log(10000.0) / dim)))
|
21 |
+
pe[:, 0::2] = torch.sin(position.float() * div_term)
|
22 |
+
pe[:, 1::2] = torch.cos(position.float() * div_term)
|
23 |
+
|
24 |
+
return pe.unsqueeze(1)
|
25 |
+
|
26 |
+
|
27 |
+
class PositionEmbedding(nn.Module):
|
28 |
+
"""
|
29 |
+
Absolute pos embedding (standard), learned.
|
30 |
+
"""
|
31 |
+
def __init__(self, seq_length, dim, dropout, grad=False):
|
32 |
+
super().__init__()
|
33 |
+
self.embed = nn.Parameter(data=PE1d_sincos(seq_length, dim), requires_grad=grad)
|
34 |
+
self.dropout = nn.Dropout(p=dropout)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
# x.shape: bs, seq_len, feat_dim
|
38 |
+
l = x.shape[1]
|
39 |
+
x = x.permute(1, 0, 2) + self.embed[:l].expand(x.permute(1, 0, 2).shape)
|
40 |
+
x = self.dropout(x.permute(1, 0, 2))
|
41 |
+
return x
|
42 |
+
|
43 |
+
|
models/quantize_cnn.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
class QuantizeEMAReset(nn.Module):
|
7 |
+
def __init__(self, nb_code, code_dim, args):
|
8 |
+
super().__init__()
|
9 |
+
self.nb_code = nb_code
|
10 |
+
self.code_dim = code_dim
|
11 |
+
self.mu = args.mu
|
12 |
+
self.reset_codebook()
|
13 |
+
|
14 |
+
def reset_codebook(self):
|
15 |
+
self.init = False
|
16 |
+
self.code_sum = None
|
17 |
+
self.code_count = None
|
18 |
+
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
|
19 |
+
|
20 |
+
def _tile(self, x):
|
21 |
+
nb_code_x, code_dim = x.shape
|
22 |
+
if nb_code_x < self.nb_code:
|
23 |
+
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
|
24 |
+
std = 0.01 / np.sqrt(code_dim)
|
25 |
+
out = x.repeat(n_repeats, 1)
|
26 |
+
out = out + torch.randn_like(out) * std
|
27 |
+
else :
|
28 |
+
out = x
|
29 |
+
return out
|
30 |
+
|
31 |
+
def init_codebook(self, x):
|
32 |
+
out = self._tile(x)
|
33 |
+
self.codebook = out[:self.nb_code]
|
34 |
+
self.code_sum = self.codebook.clone()
|
35 |
+
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
|
36 |
+
self.init = True
|
37 |
+
|
38 |
+
@torch.no_grad()
|
39 |
+
def compute_perplexity(self, code_idx) :
|
40 |
+
# Calculate new centres
|
41 |
+
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
|
42 |
+
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
|
43 |
+
|
44 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
45 |
+
prob = code_count / torch.sum(code_count)
|
46 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
47 |
+
return perplexity
|
48 |
+
|
49 |
+
@torch.no_grad()
|
50 |
+
def update_codebook(self, x, code_idx):
|
51 |
+
|
52 |
+
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
|
53 |
+
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
|
54 |
+
|
55 |
+
code_sum = torch.matmul(code_onehot, x) # nb_code, w
|
56 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
57 |
+
|
58 |
+
out = self._tile(x)
|
59 |
+
code_rand = out[:self.nb_code]
|
60 |
+
|
61 |
+
# Update centres
|
62 |
+
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
|
63 |
+
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
|
64 |
+
|
65 |
+
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
|
66 |
+
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
|
67 |
+
|
68 |
+
self.codebook = usage * code_update + (1 - usage) * code_rand
|
69 |
+
prob = code_count / torch.sum(code_count)
|
70 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
71 |
+
|
72 |
+
|
73 |
+
return perplexity
|
74 |
+
|
75 |
+
def preprocess(self, x):
|
76 |
+
# NCT -> NTC -> [NT, C]
|
77 |
+
x = x.permute(0, 2, 1).contiguous()
|
78 |
+
x = x.view(-1, x.shape[-1])
|
79 |
+
return x
|
80 |
+
|
81 |
+
def quantize(self, x):
|
82 |
+
# Calculate latent code x_l
|
83 |
+
k_w = self.codebook.t()
|
84 |
+
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
|
85 |
+
keepdim=True) # (N * L, b)
|
86 |
+
_, code_idx = torch.min(distance, dim=-1)
|
87 |
+
return code_idx
|
88 |
+
|
89 |
+
def dequantize(self, code_idx):
|
90 |
+
x = F.embedding(code_idx, self.codebook)
|
91 |
+
return x
|
92 |
+
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
N, width, T = x.shape
|
96 |
+
|
97 |
+
# Preprocess
|
98 |
+
x = self.preprocess(x)
|
99 |
+
|
100 |
+
# Init codebook if not inited
|
101 |
+
if self.training and not self.init:
|
102 |
+
self.init_codebook(x)
|
103 |
+
|
104 |
+
# quantize and dequantize through bottleneck
|
105 |
+
code_idx = self.quantize(x)
|
106 |
+
x_d = self.dequantize(code_idx)
|
107 |
+
|
108 |
+
# Update embeddings
|
109 |
+
if self.training:
|
110 |
+
perplexity = self.update_codebook(x, code_idx)
|
111 |
+
else :
|
112 |
+
perplexity = self.compute_perplexity(code_idx)
|
113 |
+
|
114 |
+
# Loss
|
115 |
+
commit_loss = F.mse_loss(x, x_d.detach())
|
116 |
+
|
117 |
+
# Passthrough
|
118 |
+
x_d = x + (x_d - x).detach()
|
119 |
+
|
120 |
+
# Postprocess
|
121 |
+
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
122 |
+
|
123 |
+
return x_d, commit_loss, perplexity
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
class Quantizer(nn.Module):
|
128 |
+
def __init__(self, n_e, e_dim, beta):
|
129 |
+
super(Quantizer, self).__init__()
|
130 |
+
|
131 |
+
self.e_dim = e_dim
|
132 |
+
self.n_e = n_e
|
133 |
+
self.beta = beta
|
134 |
+
|
135 |
+
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
136 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
137 |
+
|
138 |
+
def forward(self, z):
|
139 |
+
|
140 |
+
N, width, T = z.shape
|
141 |
+
z = self.preprocess(z)
|
142 |
+
assert z.shape[-1] == self.e_dim
|
143 |
+
z_flattened = z.contiguous().view(-1, self.e_dim)
|
144 |
+
|
145 |
+
# B x V
|
146 |
+
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
|
147 |
+
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
|
148 |
+
torch.matmul(z_flattened, self.embedding.weight.t())
|
149 |
+
# B x 1
|
150 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
151 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
152 |
+
|
153 |
+
# compute loss for embedding
|
154 |
+
loss = torch.mean((z_q - z.detach())**2) + self.beta * \
|
155 |
+
torch.mean((z_q.detach() - z)**2)
|
156 |
+
|
157 |
+
# preserve gradients
|
158 |
+
z_q = z + (z_q - z).detach()
|
159 |
+
z_q = z_q.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
160 |
+
|
161 |
+
min_encodings = F.one_hot(min_encoding_indices, self.n_e).type(z.dtype)
|
162 |
+
e_mean = torch.mean(min_encodings, dim=0)
|
163 |
+
perplexity = torch.exp(-torch.sum(e_mean*torch.log(e_mean + 1e-10)))
|
164 |
+
return z_q, loss, perplexity
|
165 |
+
|
166 |
+
def quantize(self, z):
|
167 |
+
|
168 |
+
assert z.shape[-1] == self.e_dim
|
169 |
+
|
170 |
+
# B x V
|
171 |
+
d = torch.sum(z ** 2, dim=1, keepdim=True) + \
|
172 |
+
torch.sum(self.embedding.weight ** 2, dim=1) - 2 * \
|
173 |
+
torch.matmul(z, self.embedding.weight.t())
|
174 |
+
# B x 1
|
175 |
+
min_encoding_indices = torch.argmin(d, dim=1)
|
176 |
+
return min_encoding_indices
|
177 |
+
|
178 |
+
def dequantize(self, indices):
|
179 |
+
|
180 |
+
index_flattened = indices.view(-1)
|
181 |
+
z_q = self.embedding(index_flattened)
|
182 |
+
z_q = z_q.view(indices.shape + (self.e_dim, )).contiguous()
|
183 |
+
return z_q
|
184 |
+
|
185 |
+
def preprocess(self, x):
|
186 |
+
# NCT -> NTC -> [NT, C]
|
187 |
+
x = x.permute(0, 2, 1).contiguous()
|
188 |
+
x = x.view(-1, x.shape[-1])
|
189 |
+
return x
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
class QuantizeReset(nn.Module):
|
194 |
+
def __init__(self, nb_code, code_dim, args):
|
195 |
+
super().__init__()
|
196 |
+
self.nb_code = nb_code
|
197 |
+
self.code_dim = code_dim
|
198 |
+
self.reset_codebook()
|
199 |
+
self.codebook = nn.Parameter(torch.randn(nb_code, code_dim))
|
200 |
+
|
201 |
+
def reset_codebook(self):
|
202 |
+
self.init = False
|
203 |
+
self.code_count = None
|
204 |
+
|
205 |
+
def _tile(self, x):
|
206 |
+
nb_code_x, code_dim = x.shape
|
207 |
+
if nb_code_x < self.nb_code:
|
208 |
+
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
|
209 |
+
std = 0.01 / np.sqrt(code_dim)
|
210 |
+
out = x.repeat(n_repeats, 1)
|
211 |
+
out = out + torch.randn_like(out) * std
|
212 |
+
else :
|
213 |
+
out = x
|
214 |
+
return out
|
215 |
+
|
216 |
+
def init_codebook(self, x):
|
217 |
+
out = self._tile(x)
|
218 |
+
self.codebook = nn.Parameter(out[:self.nb_code])
|
219 |
+
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
|
220 |
+
self.init = True
|
221 |
+
|
222 |
+
@torch.no_grad()
|
223 |
+
def compute_perplexity(self, code_idx) :
|
224 |
+
# Calculate new centres
|
225 |
+
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
|
226 |
+
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
|
227 |
+
|
228 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
229 |
+
prob = code_count / torch.sum(code_count)
|
230 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
231 |
+
return perplexity
|
232 |
+
|
233 |
+
def update_codebook(self, x, code_idx):
|
234 |
+
|
235 |
+
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
|
236 |
+
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
|
237 |
+
|
238 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
239 |
+
|
240 |
+
out = self._tile(x)
|
241 |
+
code_rand = out[:self.nb_code]
|
242 |
+
|
243 |
+
# Update centres
|
244 |
+
self.code_count = code_count # nb_code
|
245 |
+
usage = (self.code_count.view(self.nb_code, 1) >= 1.0).float()
|
246 |
+
|
247 |
+
self.codebook.data = usage * self.codebook.data + (1 - usage) * code_rand
|
248 |
+
prob = code_count / torch.sum(code_count)
|
249 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
250 |
+
|
251 |
+
|
252 |
+
return perplexity
|
253 |
+
|
254 |
+
def preprocess(self, x):
|
255 |
+
# NCT -> NTC -> [NT, C]
|
256 |
+
x = x.permute(0, 2, 1).contiguous()
|
257 |
+
x = x.view(-1, x.shape[-1])
|
258 |
+
return x
|
259 |
+
|
260 |
+
def quantize(self, x):
|
261 |
+
# Calculate latent code x_l
|
262 |
+
k_w = self.codebook.t()
|
263 |
+
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
|
264 |
+
keepdim=True) # (N * L, b)
|
265 |
+
_, code_idx = torch.min(distance, dim=-1)
|
266 |
+
return code_idx
|
267 |
+
|
268 |
+
def dequantize(self, code_idx):
|
269 |
+
x = F.embedding(code_idx, self.codebook)
|
270 |
+
return x
|
271 |
+
|
272 |
+
|
273 |
+
def forward(self, x):
|
274 |
+
N, width, T = x.shape
|
275 |
+
# Preprocess
|
276 |
+
x = self.preprocess(x)
|
277 |
+
# Init codebook if not inited
|
278 |
+
if self.training and not self.init:
|
279 |
+
self.init_codebook(x)
|
280 |
+
# quantize and dequantize through bottleneck
|
281 |
+
code_idx = self.quantize(x)
|
282 |
+
x_d = self.dequantize(code_idx)
|
283 |
+
# Update embeddings
|
284 |
+
if self.training:
|
285 |
+
perplexity = self.update_codebook(x, code_idx)
|
286 |
+
else :
|
287 |
+
perplexity = self.compute_perplexity(code_idx)
|
288 |
+
|
289 |
+
# Loss
|
290 |
+
commit_loss = F.mse_loss(x, x_d.detach())
|
291 |
+
|
292 |
+
# Passthrough
|
293 |
+
x_d = x + (x_d - x).detach()
|
294 |
+
|
295 |
+
# Postprocess
|
296 |
+
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
297 |
+
|
298 |
+
return x_d, commit_loss, perplexity
|
299 |
+
|
300 |
+
|
301 |
+
class QuantizeEMA(nn.Module):
|
302 |
+
def __init__(self, nb_code, code_dim, args):
|
303 |
+
super().__init__()
|
304 |
+
self.nb_code = nb_code
|
305 |
+
self.code_dim = code_dim
|
306 |
+
self.mu = 0.99
|
307 |
+
self.reset_codebook()
|
308 |
+
|
309 |
+
def reset_codebook(self):
|
310 |
+
self.init = False
|
311 |
+
self.code_sum = None
|
312 |
+
self.code_count = None
|
313 |
+
self.register_buffer('codebook', torch.zeros(self.nb_code, self.code_dim).cuda())
|
314 |
+
|
315 |
+
def _tile(self, x):
|
316 |
+
nb_code_x, code_dim = x.shape
|
317 |
+
if nb_code_x < self.nb_code:
|
318 |
+
n_repeats = (self.nb_code + nb_code_x - 1) // nb_code_x
|
319 |
+
std = 0.01 / np.sqrt(code_dim)
|
320 |
+
out = x.repeat(n_repeats, 1)
|
321 |
+
out = out + torch.randn_like(out) * std
|
322 |
+
else :
|
323 |
+
out = x
|
324 |
+
return out
|
325 |
+
|
326 |
+
def init_codebook(self, x):
|
327 |
+
out = self._tile(x)
|
328 |
+
self.codebook = out[:self.nb_code]
|
329 |
+
self.code_sum = self.codebook.clone()
|
330 |
+
self.code_count = torch.ones(self.nb_code, device=self.codebook.device)
|
331 |
+
self.init = True
|
332 |
+
|
333 |
+
@torch.no_grad()
|
334 |
+
def compute_perplexity(self, code_idx) :
|
335 |
+
# Calculate new centres
|
336 |
+
code_onehot = torch.zeros(self.nb_code, code_idx.shape[0], device=code_idx.device) # nb_code, N * L
|
337 |
+
code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1)
|
338 |
+
|
339 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
340 |
+
prob = code_count / torch.sum(code_count)
|
341 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
342 |
+
return perplexity
|
343 |
+
|
344 |
+
@torch.no_grad()
|
345 |
+
def update_codebook(self, x, code_idx):
|
346 |
+
|
347 |
+
code_onehot = torch.zeros(self.nb_code, x.shape[0], device=x.device) # nb_code, N * L
|
348 |
+
code_onehot.scatter_(0, code_idx.view(1, x.shape[0]), 1)
|
349 |
+
|
350 |
+
code_sum = torch.matmul(code_onehot, x) # nb_code, w
|
351 |
+
code_count = code_onehot.sum(dim=-1) # nb_code
|
352 |
+
|
353 |
+
# Update centres
|
354 |
+
self.code_sum = self.mu * self.code_sum + (1. - self.mu) * code_sum # w, nb_code
|
355 |
+
self.code_count = self.mu * self.code_count + (1. - self.mu) * code_count # nb_code
|
356 |
+
|
357 |
+
code_update = self.code_sum.view(self.nb_code, self.code_dim) / self.code_count.view(self.nb_code, 1)
|
358 |
+
|
359 |
+
self.codebook = code_update
|
360 |
+
prob = code_count / torch.sum(code_count)
|
361 |
+
perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7)))
|
362 |
+
|
363 |
+
return perplexity
|
364 |
+
|
365 |
+
def preprocess(self, x):
|
366 |
+
# NCT -> NTC -> [NT, C]
|
367 |
+
x = x.permute(0, 2, 1).contiguous()
|
368 |
+
x = x.view(-1, x.shape[-1])
|
369 |
+
return x
|
370 |
+
|
371 |
+
def quantize(self, x):
|
372 |
+
# Calculate latent code x_l
|
373 |
+
k_w = self.codebook.t()
|
374 |
+
distance = torch.sum(x ** 2, dim=-1, keepdim=True) - 2 * torch.matmul(x, k_w) + torch.sum(k_w ** 2, dim=0,
|
375 |
+
keepdim=True) # (N * L, b)
|
376 |
+
_, code_idx = torch.min(distance, dim=-1)
|
377 |
+
return code_idx
|
378 |
+
|
379 |
+
def dequantize(self, code_idx):
|
380 |
+
x = F.embedding(code_idx, self.codebook)
|
381 |
+
return x
|
382 |
+
|
383 |
+
|
384 |
+
def forward(self, x):
|
385 |
+
N, width, T = x.shape
|
386 |
+
|
387 |
+
# Preprocess
|
388 |
+
x = self.preprocess(x)
|
389 |
+
|
390 |
+
# Init codebook if not inited
|
391 |
+
if self.training and not self.init:
|
392 |
+
self.init_codebook(x)
|
393 |
+
|
394 |
+
# quantize and dequantize through bottleneck
|
395 |
+
code_idx = self.quantize(x)
|
396 |
+
x_d = self.dequantize(code_idx)
|
397 |
+
|
398 |
+
# Update embeddings
|
399 |
+
if self.training:
|
400 |
+
perplexity = self.update_codebook(x, code_idx)
|
401 |
+
else :
|
402 |
+
perplexity = self.compute_perplexity(code_idx)
|
403 |
+
|
404 |
+
# Loss
|
405 |
+
commit_loss = F.mse_loss(x, x_d.detach())
|
406 |
+
|
407 |
+
# Passthrough
|
408 |
+
x_d = x + (x_d - x).detach()
|
409 |
+
|
410 |
+
# Postprocess
|
411 |
+
x_d = x_d.view(N, T, -1).permute(0, 2, 1).contiguous() #(N, DIM, T)
|
412 |
+
|
413 |
+
return x_d, commit_loss, perplexity
|
models/resnet.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class nonlinearity(nn.Module):
|
5 |
+
def __init__(self):
|
6 |
+
super().__init__()
|
7 |
+
|
8 |
+
def forward(self, x):
|
9 |
+
# swish
|
10 |
+
return x * torch.sigmoid(x)
|
11 |
+
|
12 |
+
class ResConv1DBlock(nn.Module):
|
13 |
+
def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
|
14 |
+
super().__init__()
|
15 |
+
padding = dilation
|
16 |
+
self.norm = norm
|
17 |
+
if norm == "LN":
|
18 |
+
self.norm1 = nn.LayerNorm(n_in)
|
19 |
+
self.norm2 = nn.LayerNorm(n_in)
|
20 |
+
elif norm == "GN":
|
21 |
+
self.norm1 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
|
22 |
+
self.norm2 = nn.GroupNorm(num_groups=32, num_channels=n_in, eps=1e-6, affine=True)
|
23 |
+
elif norm == "BN":
|
24 |
+
self.norm1 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
|
25 |
+
self.norm2 = nn.BatchNorm1d(num_features=n_in, eps=1e-6, affine=True)
|
26 |
+
|
27 |
+
else:
|
28 |
+
self.norm1 = nn.Identity()
|
29 |
+
self.norm2 = nn.Identity()
|
30 |
+
|
31 |
+
if activation == "relu":
|
32 |
+
self.activation1 = nn.ReLU()
|
33 |
+
self.activation2 = nn.ReLU()
|
34 |
+
|
35 |
+
elif activation == "silu":
|
36 |
+
self.activation1 = nonlinearity()
|
37 |
+
self.activation2 = nonlinearity()
|
38 |
+
|
39 |
+
elif activation == "gelu":
|
40 |
+
self.activation1 = nn.GELU()
|
41 |
+
self.activation2 = nn.GELU()
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
self.conv1 = nn.Conv1d(n_in, n_state, 3, 1, padding, dilation)
|
46 |
+
self.conv2 = nn.Conv1d(n_state, n_in, 1, 1, 0,)
|
47 |
+
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x_orig = x
|
51 |
+
if self.norm == "LN":
|
52 |
+
x = self.norm1(x.transpose(-2, -1))
|
53 |
+
x = self.activation1(x.transpose(-2, -1))
|
54 |
+
else:
|
55 |
+
x = self.norm1(x)
|
56 |
+
x = self.activation1(x)
|
57 |
+
|
58 |
+
x = self.conv1(x)
|
59 |
+
|
60 |
+
if self.norm == "LN":
|
61 |
+
x = self.norm2(x.transpose(-2, -1))
|
62 |
+
x = self.activation2(x.transpose(-2, -1))
|
63 |
+
else:
|
64 |
+
x = self.norm2(x)
|
65 |
+
x = self.activation2(x)
|
66 |
+
|
67 |
+
x = self.conv2(x)
|
68 |
+
x = x + x_orig
|
69 |
+
return x
|
70 |
+
|
71 |
+
class Resnet1D(nn.Module):
|
72 |
+
def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm) for depth in range(n_depth)]
|
76 |
+
if reverse_dilation:
|
77 |
+
blocks = blocks[::-1]
|
78 |
+
|
79 |
+
self.model = nn.Sequential(*blocks)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
return self.model(x)
|
models/resnet_imp.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
import torch.nn.init as init
|
4 |
+
|
5 |
+
# Swish nonlinearity
|
6 |
+
class Swish(nn.Module):
|
7 |
+
def __init__(self):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
def forward(self, x):
|
11 |
+
return x * torch.sigmoid(x)
|
12 |
+
|
13 |
+
# Improved residual block with three convolutions, dropout, and normalization
|
14 |
+
class ResConv1DBlock(nn.Module):
|
15 |
+
def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.dropout = dropout
|
19 |
+
self.norm = norm
|
20 |
+
|
21 |
+
# Select normalization
|
22 |
+
def get_norm(n):
|
23 |
+
if norm == "LN":
|
24 |
+
return nn.LayerNorm(n)
|
25 |
+
elif norm == "GN":
|
26 |
+
return nn.GroupNorm(32, n)
|
27 |
+
elif norm == "BN":
|
28 |
+
return nn.BatchNorm1d(n)
|
29 |
+
else:
|
30 |
+
return nn.Identity()
|
31 |
+
|
32 |
+
self.norm1 = get_norm(n_in)
|
33 |
+
self.norm2 = get_norm(n_state)
|
34 |
+
self.norm3 = get_norm(n_in)
|
35 |
+
|
36 |
+
# Select activation
|
37 |
+
def get_activation(a):
|
38 |
+
if a == "relu":
|
39 |
+
return nn.ReLU()
|
40 |
+
elif a == "silu":
|
41 |
+
return Swish()
|
42 |
+
elif a == "gelu":
|
43 |
+
return nn.GELU()
|
44 |
+
elif a == "leaky_relu":
|
45 |
+
return nn.LeakyReLU(0.01)
|
46 |
+
else:
|
47 |
+
raise ValueError("Unsupported activation type")
|
48 |
+
|
49 |
+
self.activation1 = get_activation(activation)
|
50 |
+
self.activation2 = get_activation(activation)
|
51 |
+
self.activation3 = get_activation(activation)
|
52 |
+
|
53 |
+
# Convolution layers with dropout and normalization
|
54 |
+
self.conv1 = nn.Conv1d(n_in, n_state, 3, padding=dilation, dilation=dilation)
|
55 |
+
self.conv2 = nn.Conv1d(n_state, n_state, 3, padding=dilation, dilation=dilation)
|
56 |
+
self.conv3 = nn.Conv1d(n_state, n_in, 1) # Back to input dimensions
|
57 |
+
|
58 |
+
if dropout:
|
59 |
+
self.drop = nn.Dropout(dropout)
|
60 |
+
|
61 |
+
# Initialize weights
|
62 |
+
init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
|
63 |
+
init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
|
64 |
+
init.kaiming_normal_(self.conv3.weight, nonlinearity='relu')
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x_orig = x
|
68 |
+
|
69 |
+
# Normalize and activate
|
70 |
+
x = self.norm1(x)
|
71 |
+
x = self.activation1(x)
|
72 |
+
|
73 |
+
# First convolution
|
74 |
+
x = self.conv1(x)
|
75 |
+
|
76 |
+
# Apply dropout if specified
|
77 |
+
if self.dropout:
|
78 |
+
x = self.drop(x)
|
79 |
+
|
80 |
+
# Normalize and activate again
|
81 |
+
x = self.norm2(x)
|
82 |
+
x = self.activation2(x)
|
83 |
+
|
84 |
+
# Second convolution
|
85 |
+
x = self.conv2(x)
|
86 |
+
|
87 |
+
# Normalize, activate, and apply the final convolution
|
88 |
+
x = self.norm3(x)
|
89 |
+
x = self.activation3(x)
|
90 |
+
x = self.conv3(x)
|
91 |
+
|
92 |
+
# Apply skip connection
|
93 |
+
x = x + x_orig
|
94 |
+
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
# ResNet1D with multiple residual blocks
|
99 |
+
class Resnet1D(nn.Module):
|
100 |
+
def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None, dropout=None):
|
101 |
+
super().__init__()
|
102 |
+
|
103 |
+
# Create residual blocks
|
104 |
+
blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm, dropout=dropout) for depth in range(n_depth)]
|
105 |
+
|
106 |
+
if reverse_dilation:
|
107 |
+
blocks = blocks[::-1] # Reverse the order if needed
|
108 |
+
|
109 |
+
self.model = nn.Sequential(*blocks)
|
110 |
+
|
111 |
+
def forward(self, x):
|
112 |
+
return self.model(x)
|
models/resnet_imp_1.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
import torch.nn.init as init
|
4 |
+
|
5 |
+
# Nonlinearity class for activation functions like Swish
|
6 |
+
class Swish(nn.Module):
|
7 |
+
def __init__():
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
def forward(self, x):
|
11 |
+
return x * torch.sigmoid(x)
|
12 |
+
|
13 |
+
# Main residual block with 2 convolution layers and a skip connection
|
14 |
+
class ResConv1DBlock(nn.Module):
|
15 |
+
def __init__(self, n_in, n_state, dilation=1, activation='silu', norm=None, dropout=None):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
# Padding for convolution with dilation
|
19 |
+
padding = dilation
|
20 |
+
|
21 |
+
# Add dropout
|
22 |
+
self.dropout = dropout
|
23 |
+
|
24 |
+
# Configure normalization
|
25 |
+
self.norm = norm
|
26 |
+
if norm == "LN":
|
27 |
+
self.norm1 = nn.LayerNorm(n_in)
|
28 |
+
self.norm2 = nn.LayerNorm(n_in)
|
29 |
+
elif norm == "GN":
|
30 |
+
self.norm1 = nn.GroupNorm(32, n_in)
|
31 |
+
self.norm2 = nn.GroupNorm(32, n_in)
|
32 |
+
elif norm == "BN":
|
33 |
+
self.norm1 = nn.BatchNorm1d(n_in)
|
34 |
+
self.norm2 = nn.BatchNorm1d(n_in)
|
35 |
+
else:
|
36 |
+
self.norm1 = nn.Identity()
|
37 |
+
self.norm2 = nn.Identity()
|
38 |
+
|
39 |
+
# Configure activation
|
40 |
+
if activation == "relu":
|
41 |
+
self.activation1 = nn.ReLU()
|
42 |
+
self.activation2 = nn.ReLU()
|
43 |
+
elif activation == "silu":
|
44 |
+
self.activation1 = Swish()
|
45 |
+
self.activation2 = Swish()
|
46 |
+
elif activation == "gelu":
|
47 |
+
self.activation1 = nn.GELU()
|
48 |
+
self.activation2 = nn.GELU()
|
49 |
+
else:
|
50 |
+
raise ValueError("Unsupported activation type")
|
51 |
+
|
52 |
+
# Convolution layers with skip connection
|
53 |
+
self.conv1 = nn.Conv1d(n_in, n_state, 3, padding=padding, dilation=dilation)
|
54 |
+
self.conv_skip = nn.Conv1d(n_state, n_state, 1, stride=1, padding=0)
|
55 |
+
self.conv2 = nn.Conv1d(n_state, n_in, 1, padding=0)
|
56 |
+
|
57 |
+
# Dropout layer if specified
|
58 |
+
if self.dropout:
|
59 |
+
self.drop = nn.Dropout(dropout)
|
60 |
+
|
61 |
+
# Initialize weights with suitable initialization
|
62 |
+
init.kaiming_normal_(self.conv1.weight, nonlinearity='relu')
|
63 |
+
init.kaiming_normal_(self.conv_skip.weight, nonlinearity='relu')
|
64 |
+
init.kaiming_normal_(self.conv2.weight, nonlinearity='relu')
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x_orig = x
|
68 |
+
|
69 |
+
# Apply normalization and activation
|
70 |
+
if self.norm == "LN":
|
71 |
+
x = self.norm1(x.transpose(-2, -1)).transpose(-2, -1)
|
72 |
+
else:
|
73 |
+
x = self.norm1(x)
|
74 |
+
|
75 |
+
x = self.activation1(x)
|
76 |
+
|
77 |
+
# First convolution
|
78 |
+
x = self.conv1(x)
|
79 |
+
|
80 |
+
# Dropout after first convolution if needed
|
81 |
+
if self.dropout:
|
82 |
+
x = self.drop(x)
|
83 |
+
|
84 |
+
# Apply skip connection between two convolution layers
|
85 |
+
skip = self.conv_skip(x)
|
86 |
+
|
87 |
+
# Normalization and activation again
|
88 |
+
if self.norm == "LN":
|
89 |
+
skip = self.norm2(skip.transpose(-2, -1)).transpose(-2, -1)
|
90 |
+
else:
|
91 |
+
skip = self.norm2(skip)
|
92 |
+
|
93 |
+
skip = self.activation2(skip)
|
94 |
+
|
95 |
+
# Apply the second convolution
|
96 |
+
x = self.conv2(skip)
|
97 |
+
|
98 |
+
# Final skip connection with the original input
|
99 |
+
x = x + x_orig
|
100 |
+
|
101 |
+
return x
|
102 |
+
|
103 |
+
|
104 |
+
# Main ResNet1D class
|
105 |
+
class Resnet1D(nn.Module):
|
106 |
+
def __init__(self, n_in, n_depth, dilation_growth_rate=1, reverse_dilation=True, activation='relu', norm=None, dropout=None):
|
107 |
+
super().__init__()
|
108 |
+
|
109 |
+
# Create residual blocks with the specified configuration
|
110 |
+
blocks = [ResConv1DBlock(n_in, n_in, dilation=dilation_growth_rate ** depth, activation=activation, norm=norm, dropout=dropout) for depth in range(n_depth)]
|
111 |
+
|
112 |
+
if reverse_dilation:
|
113 |
+
blocks = blocks[::-1]
|
114 |
+
|
115 |
+
self.model = nn.Sequential(*blocks)
|
116 |
+
|
117 |
+
def forward(self, x):
|
118 |
+
return self.model(x)
|
models/rotation2xyz.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is based on https://github.com/Mathux/ACTOR.git
|
2 |
+
import torch
|
3 |
+
import utils.rotation_conversions as geometry
|
4 |
+
|
5 |
+
|
6 |
+
from models.smpl import SMPL, JOINTSTYPE_ROOT
|
7 |
+
# from .get_model import JOINTSTYPES
|
8 |
+
JOINTSTYPES = ["a2m", "a2mpl", "smpl", "vibe", "vertices"]
|
9 |
+
|
10 |
+
|
11 |
+
class Rotation2xyz:
|
12 |
+
def __init__(self, device, dataset='amass'):
|
13 |
+
self.device = device
|
14 |
+
self.dataset = dataset
|
15 |
+
self.smpl_model = SMPL().eval().to(device)
|
16 |
+
|
17 |
+
def __call__(self, x, mask, pose_rep, translation, glob,
|
18 |
+
jointstype, vertstrans, betas=None, beta=0,
|
19 |
+
glob_rot=None, get_rotations_back=False, **kwargs):
|
20 |
+
if pose_rep == "xyz":
|
21 |
+
return x
|
22 |
+
|
23 |
+
if mask is None:
|
24 |
+
mask = torch.ones((x.shape[0], x.shape[-1]), dtype=bool, device=x.device)
|
25 |
+
|
26 |
+
if not glob and glob_rot is None:
|
27 |
+
raise TypeError("You must specify global rotation if glob is False")
|
28 |
+
|
29 |
+
if jointstype not in JOINTSTYPES:
|
30 |
+
raise NotImplementedError("This jointstype is not implemented.")
|
31 |
+
|
32 |
+
if translation:
|
33 |
+
x_translations = x[:, -1, :3]
|
34 |
+
x_rotations = x[:, :-1]
|
35 |
+
else:
|
36 |
+
x_rotations = x
|
37 |
+
|
38 |
+
x_rotations = x_rotations.permute(0, 3, 1, 2)
|
39 |
+
nsamples, time, njoints, feats = x_rotations.shape
|
40 |
+
|
41 |
+
# Compute rotations (convert only masked sequences output)
|
42 |
+
if pose_rep == "rotvec":
|
43 |
+
rotations = geometry.axis_angle_to_matrix(x_rotations[mask])
|
44 |
+
elif pose_rep == "rotmat":
|
45 |
+
rotations = x_rotations[mask].view(-1, njoints, 3, 3)
|
46 |
+
elif pose_rep == "rotquat":
|
47 |
+
rotations = geometry.quaternion_to_matrix(x_rotations[mask])
|
48 |
+
elif pose_rep == "rot6d":
|
49 |
+
rotations = geometry.rotation_6d_to_matrix(x_rotations[mask])
|
50 |
+
else:
|
51 |
+
raise NotImplementedError("No geometry for this one.")
|
52 |
+
|
53 |
+
if not glob:
|
54 |
+
global_orient = torch.tensor(glob_rot, device=x.device)
|
55 |
+
global_orient = geometry.axis_angle_to_matrix(global_orient).view(1, 1, 3, 3)
|
56 |
+
global_orient = global_orient.repeat(len(rotations), 1, 1, 1)
|
57 |
+
else:
|
58 |
+
global_orient = rotations[:, 0]
|
59 |
+
rotations = rotations[:, 1:]
|
60 |
+
|
61 |
+
if betas is None:
|
62 |
+
betas = torch.zeros([rotations.shape[0], self.smpl_model.num_betas],
|
63 |
+
dtype=rotations.dtype, device=rotations.device)
|
64 |
+
betas[:, 1] = beta
|
65 |
+
# import ipdb; ipdb.set_trace()
|
66 |
+
out = self.smpl_model(body_pose=rotations, global_orient=global_orient, betas=betas)
|
67 |
+
|
68 |
+
# get the desirable joints
|
69 |
+
joints = out[jointstype]
|
70 |
+
|
71 |
+
x_xyz = torch.empty(nsamples, time, joints.shape[1], 3, device=x.device, dtype=x.dtype)
|
72 |
+
x_xyz[~mask] = 0
|
73 |
+
x_xyz[mask] = joints
|
74 |
+
|
75 |
+
x_xyz = x_xyz.permute(0, 2, 3, 1).contiguous()
|
76 |
+
|
77 |
+
# the first translation root at the origin on the prediction
|
78 |
+
if jointstype != "vertices":
|
79 |
+
rootindex = JOINTSTYPE_ROOT[jointstype]
|
80 |
+
x_xyz = x_xyz - x_xyz[:, [rootindex], :, :]
|
81 |
+
|
82 |
+
if translation and vertstrans:
|
83 |
+
# the first translation root at the origin
|
84 |
+
x_translations = x_translations - x_translations[:, :, [0]]
|
85 |
+
|
86 |
+
# add the translation to all the joints
|
87 |
+
x_xyz = x_xyz + x_translations[:, None, :, :]
|
88 |
+
|
89 |
+
if get_rotations_back:
|
90 |
+
return x_xyz, rotations, global_orient
|
91 |
+
else:
|
92 |
+
return x_xyz
|
models/smpl.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is based on https://github.com/Mathux/ACTOR.git
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import contextlib
|
6 |
+
|
7 |
+
from smplx import SMPLLayer as _SMPLLayer
|
8 |
+
from smplx.lbs import vertices2joints
|
9 |
+
|
10 |
+
|
11 |
+
# action2motion_joints = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 24, 38]
|
12 |
+
# change 0 and 8
|
13 |
+
action2motion_joints = [8, 1, 2, 3, 4, 5, 6, 7, 0, 9, 10, 11, 12, 13, 14, 21, 24, 38]
|
14 |
+
|
15 |
+
from utils.config import SMPL_MODEL_PATH, JOINT_REGRESSOR_TRAIN_EXTRA
|
16 |
+
|
17 |
+
JOINTSTYPE_ROOT = {"a2m": 0, # action2motion
|
18 |
+
"smpl": 0,
|
19 |
+
"a2mpl": 0, # set(smpl, a2m)
|
20 |
+
"vibe": 8} # 0 is the 8 position: OP MidHip below
|
21 |
+
|
22 |
+
JOINT_MAP = {
|
23 |
+
'OP Nose': 24, 'OP Neck': 12, 'OP RShoulder': 17,
|
24 |
+
'OP RElbow': 19, 'OP RWrist': 21, 'OP LShoulder': 16,
|
25 |
+
'OP LElbow': 18, 'OP LWrist': 20, 'OP MidHip': 0,
|
26 |
+
'OP RHip': 2, 'OP RKnee': 5, 'OP RAnkle': 8,
|
27 |
+
'OP LHip': 1, 'OP LKnee': 4, 'OP LAnkle': 7,
|
28 |
+
'OP REye': 25, 'OP LEye': 26, 'OP REar': 27,
|
29 |
+
'OP LEar': 28, 'OP LBigToe': 29, 'OP LSmallToe': 30,
|
30 |
+
'OP LHeel': 31, 'OP RBigToe': 32, 'OP RSmallToe': 33, 'OP RHeel': 34,
|
31 |
+
'Right Ankle': 8, 'Right Knee': 5, 'Right Hip': 45,
|
32 |
+
'Left Hip': 46, 'Left Knee': 4, 'Left Ankle': 7,
|
33 |
+
'Right Wrist': 21, 'Right Elbow': 19, 'Right Shoulder': 17,
|
34 |
+
'Left Shoulder': 16, 'Left Elbow': 18, 'Left Wrist': 20,
|
35 |
+
'Neck (LSP)': 47, 'Top of Head (LSP)': 48,
|
36 |
+
'Pelvis (MPII)': 49, 'Thorax (MPII)': 50,
|
37 |
+
'Spine (H36M)': 51, 'Jaw (H36M)': 52,
|
38 |
+
'Head (H36M)': 53, 'Nose': 24, 'Left Eye': 26,
|
39 |
+
'Right Eye': 25, 'Left Ear': 28, 'Right Ear': 27
|
40 |
+
}
|
41 |
+
|
42 |
+
JOINT_NAMES = [
|
43 |
+
'OP Nose', 'OP Neck', 'OP RShoulder',
|
44 |
+
'OP RElbow', 'OP RWrist', 'OP LShoulder',
|
45 |
+
'OP LElbow', 'OP LWrist', 'OP MidHip',
|
46 |
+
'OP RHip', 'OP RKnee', 'OP RAnkle',
|
47 |
+
'OP LHip', 'OP LKnee', 'OP LAnkle',
|
48 |
+
'OP REye', 'OP LEye', 'OP REar',
|
49 |
+
'OP LEar', 'OP LBigToe', 'OP LSmallToe',
|
50 |
+
'OP LHeel', 'OP RBigToe', 'OP RSmallToe', 'OP RHeel',
|
51 |
+
'Right Ankle', 'Right Knee', 'Right Hip',
|
52 |
+
'Left Hip', 'Left Knee', 'Left Ankle',
|
53 |
+
'Right Wrist', 'Right Elbow', 'Right Shoulder',
|
54 |
+
'Left Shoulder', 'Left Elbow', 'Left Wrist',
|
55 |
+
'Neck (LSP)', 'Top of Head (LSP)',
|
56 |
+
'Pelvis (MPII)', 'Thorax (MPII)',
|
57 |
+
'Spine (H36M)', 'Jaw (H36M)',
|
58 |
+
'Head (H36M)', 'Nose', 'Left Eye',
|
59 |
+
'Right Eye', 'Left Ear', 'Right Ear'
|
60 |
+
]
|
61 |
+
|
62 |
+
|
63 |
+
# adapted from VIBE/SPIN to output smpl_joints, vibe joints and action2motion joints
|
64 |
+
class SMPL(_SMPLLayer):
|
65 |
+
""" Extension of the official SMPL implementation to support more joints """
|
66 |
+
|
67 |
+
def __init__(self, model_path=SMPL_MODEL_PATH, **kwargs):
|
68 |
+
kwargs["model_path"] = model_path
|
69 |
+
|
70 |
+
# remove the verbosity for the 10-shapes beta parameters
|
71 |
+
with contextlib.redirect_stdout(None):
|
72 |
+
super(SMPL, self).__init__(**kwargs)
|
73 |
+
|
74 |
+
J_regressor_extra = np.load(JOINT_REGRESSOR_TRAIN_EXTRA)
|
75 |
+
self.register_buffer('J_regressor_extra', torch.tensor(J_regressor_extra, dtype=torch.float32))
|
76 |
+
vibe_indexes = np.array([JOINT_MAP[i] for i in JOINT_NAMES])
|
77 |
+
a2m_indexes = vibe_indexes[action2motion_joints]
|
78 |
+
smpl_indexes = np.arange(24)
|
79 |
+
a2mpl_indexes = np.unique(np.r_[smpl_indexes, a2m_indexes])
|
80 |
+
|
81 |
+
self.maps = {"vibe": vibe_indexes,
|
82 |
+
"a2m": a2m_indexes,
|
83 |
+
"smpl": smpl_indexes,
|
84 |
+
"a2mpl": a2mpl_indexes}
|
85 |
+
|
86 |
+
def forward(self, *args, **kwargs):
|
87 |
+
smpl_output = super(SMPL, self).forward(*args, **kwargs)
|
88 |
+
|
89 |
+
extra_joints = vertices2joints(self.J_regressor_extra, smpl_output.vertices)
|
90 |
+
all_joints = torch.cat([smpl_output.joints, extra_joints], dim=1)
|
91 |
+
|
92 |
+
output = {"vertices": smpl_output.vertices}
|
93 |
+
|
94 |
+
for joinstype, indexes in self.maps.items():
|
95 |
+
output[joinstype] = all_joints[:, indexes]
|
96 |
+
|
97 |
+
return output
|
models/t2m_trans.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
from torch.distributions import Categorical
|
6 |
+
import models.pos_encoding as pos_encoding
|
7 |
+
|
8 |
+
class Text2Motion_Transformer(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self,
|
11 |
+
num_vq=1024,
|
12 |
+
embed_dim=512,
|
13 |
+
clip_dim=512,
|
14 |
+
block_size=16,
|
15 |
+
num_layers=2,
|
16 |
+
n_head=8,
|
17 |
+
drop_out_rate=0.1,
|
18 |
+
fc_rate=4):
|
19 |
+
super().__init__()
|
20 |
+
self.trans_base = CrossCondTransBase(num_vq, embed_dim, clip_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
|
21 |
+
self.trans_head = CrossCondTransHead(num_vq, embed_dim, block_size, num_layers, n_head, drop_out_rate, fc_rate)
|
22 |
+
self.block_size = block_size
|
23 |
+
self.num_vq = num_vq
|
24 |
+
|
25 |
+
def get_block_size(self):
|
26 |
+
return self.block_size
|
27 |
+
|
28 |
+
def forward(self, idxs, clip_feature):
|
29 |
+
feat = self.trans_base(idxs, clip_feature)
|
30 |
+
logits = self.trans_head(feat)
|
31 |
+
return logits
|
32 |
+
|
33 |
+
def sample(self, clip_feature, if_categorial=False):
|
34 |
+
for k in range(self.block_size):
|
35 |
+
if k == 0:
|
36 |
+
x = []
|
37 |
+
else:
|
38 |
+
x = xs
|
39 |
+
logits = self.forward(x, clip_feature)
|
40 |
+
logits = logits[:, -1, :]
|
41 |
+
probs = F.softmax(logits, dim=-1)
|
42 |
+
if if_categorial:
|
43 |
+
dist = Categorical(probs)
|
44 |
+
idx = dist.sample()
|
45 |
+
if idx == self.num_vq:
|
46 |
+
break
|
47 |
+
idx = idx.unsqueeze(-1)
|
48 |
+
else:
|
49 |
+
_, idx = torch.topk(probs, k=1, dim=-1)
|
50 |
+
if idx[0] == self.num_vq:
|
51 |
+
break
|
52 |
+
# append to the sequence and continue
|
53 |
+
if k == 0:
|
54 |
+
xs = idx
|
55 |
+
else:
|
56 |
+
xs = torch.cat((xs, idx), dim=1)
|
57 |
+
|
58 |
+
if k == self.block_size - 1:
|
59 |
+
return xs[:, :-1]
|
60 |
+
return xs
|
61 |
+
|
62 |
+
class CausalCrossConditionalSelfAttention(nn.Module):
|
63 |
+
|
64 |
+
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1):
|
65 |
+
super().__init__()
|
66 |
+
assert embed_dim % 8 == 0
|
67 |
+
# key, query, value projections for all heads
|
68 |
+
self.key = nn.Linear(embed_dim, embed_dim)
|
69 |
+
self.query = nn.Linear(embed_dim, embed_dim)
|
70 |
+
self.value = nn.Linear(embed_dim, embed_dim)
|
71 |
+
|
72 |
+
self.attn_drop = nn.Dropout(drop_out_rate)
|
73 |
+
self.resid_drop = nn.Dropout(drop_out_rate)
|
74 |
+
|
75 |
+
self.proj = nn.Linear(embed_dim, embed_dim)
|
76 |
+
# causal mask to ensure that attention is only applied to the left in the input sequence
|
77 |
+
self.register_buffer("mask", torch.tril(torch.ones(block_size, block_size)).view(1, 1, block_size, block_size))
|
78 |
+
self.n_head = n_head
|
79 |
+
|
80 |
+
def forward(self, x):
|
81 |
+
B, T, C = x.size()
|
82 |
+
|
83 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
84 |
+
k = self.key(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
85 |
+
q = self.query(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
86 |
+
v = self.value(x).view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
87 |
+
# causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
|
88 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
89 |
+
att = att.masked_fill(self.mask[:,:,:T,:T] == 0, float('-inf'))
|
90 |
+
att = F.softmax(att, dim=-1)
|
91 |
+
att = self.attn_drop(att)
|
92 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
93 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
94 |
+
|
95 |
+
# output projection
|
96 |
+
y = self.resid_drop(self.proj(y))
|
97 |
+
return y
|
98 |
+
|
99 |
+
class Block(nn.Module):
|
100 |
+
|
101 |
+
def __init__(self, embed_dim=512, block_size=16, n_head=8, drop_out_rate=0.1, fc_rate=4):
|
102 |
+
super().__init__()
|
103 |
+
self.ln1 = nn.LayerNorm(embed_dim)
|
104 |
+
self.ln2 = nn.LayerNorm(embed_dim)
|
105 |
+
self.attn = CausalCrossConditionalSelfAttention(embed_dim, block_size, n_head, drop_out_rate)
|
106 |
+
self.mlp = nn.Sequential(
|
107 |
+
nn.Linear(embed_dim, fc_rate * embed_dim),
|
108 |
+
nn.GELU(),
|
109 |
+
nn.Linear(fc_rate * embed_dim, embed_dim),
|
110 |
+
nn.Dropout(drop_out_rate),
|
111 |
+
)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
x = x + self.attn(self.ln1(x))
|
115 |
+
x = x + self.mlp(self.ln2(x))
|
116 |
+
return x
|
117 |
+
|
118 |
+
class CrossCondTransBase(nn.Module):
|
119 |
+
|
120 |
+
def __init__(self,
|
121 |
+
num_vq=1024,
|
122 |
+
embed_dim=512,
|
123 |
+
clip_dim=512,
|
124 |
+
block_size=16,
|
125 |
+
num_layers=2,
|
126 |
+
n_head=8,
|
127 |
+
drop_out_rate=0.1,
|
128 |
+
fc_rate=4):
|
129 |
+
super().__init__()
|
130 |
+
self.tok_emb = nn.Embedding(num_vq + 2, embed_dim)
|
131 |
+
self.cond_emb = nn.Linear(clip_dim, embed_dim)
|
132 |
+
self.pos_embedding = nn.Embedding(block_size, embed_dim)
|
133 |
+
self.drop = nn.Dropout(drop_out_rate)
|
134 |
+
# transformer block
|
135 |
+
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
|
136 |
+
self.pos_embed = pos_encoding.PositionEmbedding(block_size, embed_dim, 0.0, False)
|
137 |
+
|
138 |
+
self.block_size = block_size
|
139 |
+
|
140 |
+
self.apply(self._init_weights)
|
141 |
+
|
142 |
+
def get_block_size(self):
|
143 |
+
return self.block_size
|
144 |
+
|
145 |
+
def _init_weights(self, module):
|
146 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
147 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
148 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
149 |
+
module.bias.data.zero_()
|
150 |
+
elif isinstance(module, nn.LayerNorm):
|
151 |
+
module.bias.data.zero_()
|
152 |
+
module.weight.data.fill_(1.0)
|
153 |
+
|
154 |
+
def forward(self, idx, clip_feature):
|
155 |
+
if len(idx) == 0:
|
156 |
+
token_embeddings = self.cond_emb(clip_feature).unsqueeze(1)
|
157 |
+
else:
|
158 |
+
b, t = idx.size()
|
159 |
+
assert t <= self.block_size, "Cannot forward, model block size is exhausted."
|
160 |
+
# forward the Trans model
|
161 |
+
token_embeddings = self.tok_emb(idx)
|
162 |
+
token_embeddings = torch.cat([self.cond_emb(clip_feature).unsqueeze(1), token_embeddings], dim=1)
|
163 |
+
|
164 |
+
x = self.pos_embed(token_embeddings)
|
165 |
+
x = self.blocks(x)
|
166 |
+
|
167 |
+
return x
|
168 |
+
|
169 |
+
|
170 |
+
class CrossCondTransHead(nn.Module):
|
171 |
+
|
172 |
+
def __init__(self,
|
173 |
+
num_vq=1024,
|
174 |
+
embed_dim=512,
|
175 |
+
block_size=16,
|
176 |
+
num_layers=2,
|
177 |
+
n_head=8,
|
178 |
+
drop_out_rate=0.1,
|
179 |
+
fc_rate=4):
|
180 |
+
super().__init__()
|
181 |
+
|
182 |
+
self.blocks = nn.Sequential(*[Block(embed_dim, block_size, n_head, drop_out_rate, fc_rate) for _ in range(num_layers)])
|
183 |
+
self.ln_f = nn.LayerNorm(embed_dim)
|
184 |
+
self.head = nn.Linear(embed_dim, num_vq + 1, bias=False)
|
185 |
+
self.block_size = block_size
|
186 |
+
|
187 |
+
self.apply(self._init_weights)
|
188 |
+
|
189 |
+
def get_block_size(self):
|
190 |
+
return self.block_size
|
191 |
+
|
192 |
+
def _init_weights(self, module):
|
193 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
194 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
195 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
196 |
+
module.bias.data.zero_()
|
197 |
+
elif isinstance(module, nn.LayerNorm):
|
198 |
+
module.bias.data.zero_()
|
199 |
+
module.weight.data.fill_(1.0)
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
x = self.blocks(x)
|
203 |
+
x = self.ln_f(x)
|
204 |
+
logits = self.head(x)
|
205 |
+
return logits
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
models/vqvae.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.encdec import Encoder, Decoder
|
3 |
+
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
|
4 |
+
|
5 |
+
|
6 |
+
class VQVAE_251(nn.Module):
|
7 |
+
def __init__(self,
|
8 |
+
args,
|
9 |
+
nb_code=1024,
|
10 |
+
code_dim=512,
|
11 |
+
output_emb_width=512,
|
12 |
+
down_t=3,
|
13 |
+
stride_t=2,
|
14 |
+
width=512,
|
15 |
+
depth=3,
|
16 |
+
dilation_growth_rate=3,
|
17 |
+
activation='relu',
|
18 |
+
norm=None):
|
19 |
+
|
20 |
+
super().__init__()
|
21 |
+
self.code_dim = code_dim
|
22 |
+
self.num_code = nb_code
|
23 |
+
self.quant = args.quantizer
|
24 |
+
self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
25 |
+
self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
26 |
+
if args.quantizer == "ema_reset":
|
27 |
+
self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
|
28 |
+
elif args.quantizer == "orig":
|
29 |
+
self.quantizer = Quantizer(nb_code, code_dim, 1.0)
|
30 |
+
elif args.quantizer == "ema":
|
31 |
+
self.quantizer = QuantizeEMA(nb_code, code_dim, args)
|
32 |
+
elif args.quantizer == "reset":
|
33 |
+
self.quantizer = QuantizeReset(nb_code, code_dim, args)
|
34 |
+
|
35 |
+
|
36 |
+
def preprocess(self, x):
|
37 |
+
# (bs, T, Jx3) -> (bs, Jx3, T)
|
38 |
+
x = x.permute(0,2,1).float()
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
def postprocess(self, x):
|
43 |
+
# (bs, Jx3, T) -> (bs, T, Jx3)
|
44 |
+
x = x.permute(0,2,1)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
def encode(self, x):
|
49 |
+
N, T, _ = x.shape
|
50 |
+
x_in = self.preprocess(x)
|
51 |
+
x_encoder = self.encoder(x_in)
|
52 |
+
x_encoder = self.postprocess(x_encoder)
|
53 |
+
x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C)
|
54 |
+
code_idx = self.quantizer.quantize(x_encoder)
|
55 |
+
code_idx = code_idx.view(N, -1)
|
56 |
+
return code_idx
|
57 |
+
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
|
61 |
+
x_in = self.preprocess(x)
|
62 |
+
# Encode
|
63 |
+
x_encoder = self.encoder(x_in)
|
64 |
+
|
65 |
+
## quantization
|
66 |
+
x_quantized, loss, perplexity = self.quantizer(x_encoder)
|
67 |
+
|
68 |
+
## decoder
|
69 |
+
x_decoder = self.decoder(x_quantized)
|
70 |
+
x_out = self.postprocess(x_decoder)
|
71 |
+
return x_out, loss, perplexity
|
72 |
+
|
73 |
+
|
74 |
+
def forward_decoder(self, x):
|
75 |
+
x_d = self.quantizer.dequantize(x)
|
76 |
+
x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
|
77 |
+
|
78 |
+
# decoder
|
79 |
+
x_decoder = self.decoder(x_d)
|
80 |
+
x_out = self.postprocess(x_decoder)
|
81 |
+
return x_out
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
class HumanVQVAE(nn.Module):
|
86 |
+
def __init__(self,
|
87 |
+
args,
|
88 |
+
nb_code=512,
|
89 |
+
code_dim=512,
|
90 |
+
output_emb_width=512,
|
91 |
+
down_t=3,
|
92 |
+
stride_t=2,
|
93 |
+
width=512,
|
94 |
+
depth=3,
|
95 |
+
dilation_growth_rate=3,
|
96 |
+
activation='relu',
|
97 |
+
norm=None):
|
98 |
+
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.nb_joints = 21 if args.dataname == 'kit' else 22
|
102 |
+
self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
103 |
+
|
104 |
+
def encode(self, x):
|
105 |
+
b, t, c = x.size()
|
106 |
+
quants = self.vqvae.encode(x) # (N, T)
|
107 |
+
return quants
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
|
111 |
+
x_out, loss, perplexity = self.vqvae(x)
|
112 |
+
|
113 |
+
return x_out, loss, perplexity
|
114 |
+
|
115 |
+
def forward_decoder(self, x):
|
116 |
+
x_out = self.vqvae.forward_decoder(x)
|
117 |
+
return x_out
|
118 |
+
|
models/vqvae_imp.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.encdec_imp import Encoder, Decoder
|
3 |
+
from models.quantize_cnn import QuantizeEMAReset, Quantizer, QuantizeEMA, QuantizeReset
|
4 |
+
|
5 |
+
|
6 |
+
class VQVAE_251(nn.Module):
|
7 |
+
def __init__(self,
|
8 |
+
args,
|
9 |
+
nb_code=1024,
|
10 |
+
code_dim=512,
|
11 |
+
output_emb_width=512,
|
12 |
+
down_t=3,
|
13 |
+
stride_t=2,
|
14 |
+
width=512,
|
15 |
+
depth=3,
|
16 |
+
dilation_growth_rate=3,
|
17 |
+
activation='relu',
|
18 |
+
norm=None):
|
19 |
+
|
20 |
+
super().__init__()
|
21 |
+
self.code_dim = code_dim
|
22 |
+
self.num_code = nb_code
|
23 |
+
self.quant = args.quantizer
|
24 |
+
self.encoder = Encoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
25 |
+
self.decoder = Decoder(251 if args.dataname == 'kit' else 263, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
26 |
+
if args.quantizer == "ema_reset":
|
27 |
+
self.quantizer = QuantizeEMAReset(nb_code, code_dim, args)
|
28 |
+
elif args.quantizer == "orig":
|
29 |
+
self.quantizer = Quantizer(nb_code, code_dim, 1.0)
|
30 |
+
elif args.quantizer == "ema":
|
31 |
+
self.quantizer = QuantizeEMA(nb_code, code_dim, args)
|
32 |
+
elif args.quantizer == "reset":
|
33 |
+
self.quantizer = QuantizeReset(nb_code, code_dim, args)
|
34 |
+
|
35 |
+
|
36 |
+
def preprocess(self, x):
|
37 |
+
# (bs, T, Jx3) -> (bs, Jx3, T)
|
38 |
+
x = x.permute(0,2,1).float()
|
39 |
+
return x
|
40 |
+
|
41 |
+
|
42 |
+
def postprocess(self, x):
|
43 |
+
# (bs, Jx3, T) -> (bs, T, Jx3)
|
44 |
+
x = x.permute(0,2,1)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
def encode(self, x):
|
49 |
+
N, T, _ = x.shape
|
50 |
+
x_in = self.preprocess(x)
|
51 |
+
x_encoder = self.encoder(x_in)
|
52 |
+
x_encoder = self.postprocess(x_encoder)
|
53 |
+
x_encoder = x_encoder.contiguous().view(-1, x_encoder.shape[-1]) # (NT, C)
|
54 |
+
code_idx = self.quantizer.quantize(x_encoder)
|
55 |
+
code_idx = code_idx.view(N, -1)
|
56 |
+
return code_idx
|
57 |
+
|
58 |
+
|
59 |
+
def forward(self, x):
|
60 |
+
|
61 |
+
x_in = self.preprocess(x)
|
62 |
+
# Encode
|
63 |
+
x_encoder = self.encoder(x_in)
|
64 |
+
|
65 |
+
## quantization
|
66 |
+
x_quantized, loss, perplexity = self.quantizer(x_encoder)
|
67 |
+
|
68 |
+
## decoder
|
69 |
+
x_decoder = self.decoder(x_quantized)
|
70 |
+
x_out = self.postprocess(x_decoder)
|
71 |
+
return x_out, loss, perplexity
|
72 |
+
|
73 |
+
|
74 |
+
def forward_decoder(self, x):
|
75 |
+
x_d = self.quantizer.dequantize(x)
|
76 |
+
x_d = x_d.view(1, -1, self.code_dim).permute(0, 2, 1).contiguous()
|
77 |
+
|
78 |
+
# decoder
|
79 |
+
x_decoder = self.decoder(x_d)
|
80 |
+
x_out = self.postprocess(x_decoder)
|
81 |
+
return x_out
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
class HumanVQVAE(nn.Module):
|
86 |
+
def __init__(self,
|
87 |
+
args,
|
88 |
+
nb_code=512,
|
89 |
+
code_dim=512,
|
90 |
+
output_emb_width=512,
|
91 |
+
down_t=3,
|
92 |
+
stride_t=2,
|
93 |
+
width=512,
|
94 |
+
depth=3,
|
95 |
+
dilation_growth_rate=3,
|
96 |
+
activation='relu',
|
97 |
+
norm=None):
|
98 |
+
|
99 |
+
super().__init__()
|
100 |
+
|
101 |
+
self.nb_joints = 21 if args.dataname == 'kit' else 22
|
102 |
+
self.vqvae = VQVAE_251(args, nb_code, code_dim, output_emb_width, down_t, stride_t, width, depth, dilation_growth_rate, activation=activation, norm=norm)
|
103 |
+
|
104 |
+
def encode(self, x):
|
105 |
+
b, t, c = x.size()
|
106 |
+
quants = self.vqvae.encode(x) # (N, T)
|
107 |
+
return quants
|
108 |
+
|
109 |
+
def forward(self, x):
|
110 |
+
|
111 |
+
x_out, loss, perplexity = self.vqvae(x)
|
112 |
+
|
113 |
+
return x_out, loss, perplexity
|
114 |
+
|
115 |
+
def forward_decoder(self, x):
|
116 |
+
x_out = self.vqvae.forward_decoder(x)
|
117 |
+
return x_out
|
118 |
+
|