VLM_Test / app.py
robot0820's picture
Update app.py
2c94591 verified
raw
history blame
2.2 kB
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
from deepseek_vl.models import VLChatProcessor
from deepseek_vl.utils.io import load_pil_images
# ๆจกๅž‹่ทฏๅพ‘
model_path = "deepseek-ai/deepseek-vl-7b-chat"
# ่ผ‰ๅ…ฅ processor ๅ’Œ tokenizer
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
# ==== ้‡ๅŒ–ๆจกๅž‹่จญๅฎš (4-bit) ====
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True
)
vl_gpt: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
device_map="auto",
quantization_config=bnb_config
)
vl_gpt.eval()
# ==== ๅ–ฎๅผตๅœ–็‰‡่™•็† + ๆธ›ๅฐ‘ max_new_tokens ====
def generate_answer(image, text):
conversation = [
{"role": "User", "content": "<image_placeholder>" + text, "images": [image]},
{"role": "Assistant", "content": ""}
]
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True
).to(vl_gpt.device)
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=128, # ้™ไฝŽ็”Ÿๆˆ้•ทๅบฆ
do_sample=False,
use_cache=True
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
return f"{prepare_inputs['sft_format'][0]} {answer}"
# ==== Gradio Web UI ====
demo = gr.Interface(
fn=generate_answer,
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Question")],
outputs="text",
title="DeepSeek-VL-7B Chat Demo",
description="ไธŠๅ‚ณๅœ–็‰‡ไธฆ่ผธๅ…ฅๅ•้กŒ๏ผŒๆจกๅž‹ๆœƒ็”Ÿๆˆ่ˆ‡ๅœ–็‰‡็›ธ้—œ็š„ๅ›ž็ญ”๏ผˆ4-bit ้‡ๅŒ–๏ผŒไฝŽ่จ˜ๆ†ถ้ซ”ๆจกๅผ๏ผ‰"
)
if __name__ == "__main__":
demo.launch()