|
import torch |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, BitsAndBytesConfig |
|
from deepseek_vl.models import VLChatProcessor |
|
from deepseek_vl.utils.io import load_pil_images |
|
|
|
|
|
model_path = "deepseek-ai/deepseek-vl-7b-chat" |
|
|
|
|
|
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) |
|
tokenizer = vl_chat_processor.tokenizer |
|
|
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=torch.float16, |
|
bnb_4bit_use_double_quant=True |
|
) |
|
|
|
vl_gpt: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained( |
|
model_path, |
|
trust_remote_code=True, |
|
device_map="auto", |
|
quantization_config=bnb_config |
|
) |
|
vl_gpt.eval() |
|
|
|
|
|
def generate_answer(image, text): |
|
conversation = [ |
|
{"role": "User", "content": "<image_placeholder>" + text, "images": [image]}, |
|
{"role": "Assistant", "content": ""} |
|
] |
|
|
|
pil_images = load_pil_images(conversation) |
|
prepare_inputs = vl_chat_processor( |
|
conversations=conversation, |
|
images=pil_images, |
|
force_batchify=True |
|
).to(vl_gpt.device) |
|
|
|
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs) |
|
|
|
outputs = vl_gpt.language_model.generate( |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=prepare_inputs.attention_mask, |
|
pad_token_id=tokenizer.eos_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=128, |
|
do_sample=False, |
|
use_cache=True |
|
) |
|
|
|
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True) |
|
return f"{prepare_inputs['sft_format'][0]} {answer}" |
|
|
|
|
|
demo = gr.Interface( |
|
fn=generate_answer, |
|
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Question")], |
|
outputs="text", |
|
title="DeepSeek-VL-7B Chat Demo", |
|
description="ไธๅณๅ็ไธฆ่ผธๅ
ฅๅ้ก๏ผๆจกๅๆ็ๆ่ๅ็็ธ้็ๅ็ญ๏ผ4-bit ้ๅ๏ผไฝ่จๆถ้ซๆจกๅผ๏ผ" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |