Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import torch
|
|
|
2 |
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
3 |
from deepseek_vl.models import VLChatProcessor
|
4 |
from deepseek_vl.utils.io import load_pil_images
|
@@ -6,13 +7,13 @@ from deepseek_vl.utils.io import load_pil_images
|
|
6 |
# 模型路徑
|
7 |
model_path = "deepseek-ai/deepseek-vl-7b-chat"
|
8 |
|
9 |
-
#
|
10 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
11 |
tokenizer = vl_chat_processor.tokenizer
|
12 |
|
13 |
-
# ==== 量化模型設定 ====
|
14 |
bnb_config = BitsAndBytesConfig(
|
15 |
-
load_in_4bit=True,
|
16 |
bnb_4bit_compute_dtype=torch.float16,
|
17 |
bnb_4bit_use_double_quant=True
|
18 |
)
|
@@ -25,46 +26,44 @@ vl_gpt: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained(
|
|
25 |
)
|
26 |
vl_gpt.eval()
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
"role": "User",
|
32 |
-
"
|
33 |
-
|
34 |
-
},
|
35 |
-
{
|
36 |
-
"role": "Assistant",
|
37 |
-
"content": ""
|
38 |
-
}
|
39 |
-
]
|
40 |
|
41 |
-
|
42 |
-
answers = []
|
43 |
-
for conv in conversation:
|
44 |
-
pil_images = load_pil_images([conv])
|
45 |
prepare_inputs = vl_chat_processor(
|
46 |
-
conversations=
|
47 |
images=pil_images,
|
48 |
force_batchify=True
|
49 |
).to(vl_gpt.device)
|
50 |
|
51 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
52 |
|
53 |
-
# 減少生成長度 max_new_tokens
|
54 |
outputs = vl_gpt.language_model.generate(
|
55 |
inputs_embeds=inputs_embeds,
|
56 |
attention_mask=prepare_inputs.attention_mask,
|
57 |
pad_token_id=tokenizer.eos_token_id,
|
58 |
bos_token_id=tokenizer.bos_token_id,
|
59 |
eos_token_id=tokenizer.eos_token_id,
|
60 |
-
max_new_tokens=128,
|
61 |
do_sample=False,
|
62 |
use_cache=True
|
63 |
)
|
64 |
|
65 |
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
66 |
-
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
|
4 |
from deepseek_vl.models import VLChatProcessor
|
5 |
from deepseek_vl.utils.io import load_pil_images
|
|
|
7 |
# 模型路徑
|
8 |
model_path = "deepseek-ai/deepseek-vl-7b-chat"
|
9 |
|
10 |
+
# 載入 processor 和 tokenizer
|
11 |
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
|
12 |
tokenizer = vl_chat_processor.tokenizer
|
13 |
|
14 |
+
# ==== 量化模型設定 (4-bit) ====
|
15 |
bnb_config = BitsAndBytesConfig(
|
16 |
+
load_in_4bit=True,
|
17 |
bnb_4bit_compute_dtype=torch.float16,
|
18 |
bnb_4bit_use_double_quant=True
|
19 |
)
|
|
|
26 |
)
|
27 |
vl_gpt.eval()
|
28 |
|
29 |
+
# ==== 單張圖片處理 + 減少 max_new_tokens ====
|
30 |
+
def generate_answer(image, text):
|
31 |
+
conversation = [
|
32 |
+
{"role": "User", "content": "<image_placeholder>" + text, "images": [image]},
|
33 |
+
{"role": "Assistant", "content": ""}
|
34 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
pil_images = load_pil_images(conversation)
|
|
|
|
|
|
|
37 |
prepare_inputs = vl_chat_processor(
|
38 |
+
conversations=conversation,
|
39 |
images=pil_images,
|
40 |
force_batchify=True
|
41 |
).to(vl_gpt.device)
|
42 |
|
43 |
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
44 |
|
|
|
45 |
outputs = vl_gpt.language_model.generate(
|
46 |
inputs_embeds=inputs_embeds,
|
47 |
attention_mask=prepare_inputs.attention_mask,
|
48 |
pad_token_id=tokenizer.eos_token_id,
|
49 |
bos_token_id=tokenizer.bos_token_id,
|
50 |
eos_token_id=tokenizer.eos_token_id,
|
51 |
+
max_new_tokens=128, # 降低生成長度
|
52 |
do_sample=False,
|
53 |
use_cache=True
|
54 |
)
|
55 |
|
56 |
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
57 |
+
return f"{prepare_inputs['sft_format'][0]} {answer}"
|
58 |
|
59 |
+
# ==== Gradio Web UI ====
|
60 |
+
demo = gr.Interface(
|
61 |
+
fn=generate_answer,
|
62 |
+
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Textbox(label="Question")],
|
63 |
+
outputs="text",
|
64 |
+
title="DeepSeek-VL-7B Chat Demo",
|
65 |
+
description="上傳圖片並輸入問題,模型會生成與圖片相關的回答(4-bit 量化,低記憶體模式)"
|
66 |
+
)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
demo.launch()
|