Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
import pandas as pd | |
import numpy as np | |
from flask import Flask, request, jsonify | |
from torch_geometric.data import Data | |
from torch_geometric.nn import GATConv | |
from sentence_transformers import SentenceTransformer | |
from sklearn.metrics.pairwise import cosine_similarity | |
flask_app = Flask(__name__) | |
class ModeratelySimplifiedGATConvModel(torch.nn.Module): | |
def __init__(self, in_channels, hidden_channels, out_channels): | |
super().__init__() | |
self.conv1 = GATConv(in_channels, hidden_channels, heads=2) | |
self.dropout1 = torch.nn.Dropout(0.45) | |
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1) | |
def forward(self, x, edge_index, edge_attr=None): | |
x = self.conv1(x, edge_index, edge_attr) | |
x = torch.relu(x) | |
x = self.dropout1(x) | |
x = self.conv2(x, edge_index, edge_attr) | |
return x | |
# Load the dataset and the GATConv model | |
data = torch.load("graph_data.pt", map_location=torch.device("cpu")) | |
# Correct the state dictionary's key names | |
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu")) | |
corrected_state_dict = {} | |
for key, value in original_state_dict.items(): | |
if "lin.weight" in key: | |
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value | |
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value | |
else: | |
corrected_state_dict[key] = value | |
# Initialize the GATConv model with the corrected state dictionary | |
gatconv_model = ModeratelySimplifiedGATConvModel( | |
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768 | |
) | |
gatconv_model.load_state_dict(corrected_state_dict) | |
# Load the BERT-based sentence transformer model | |
model_bert = SentenceTransformer("all-mpnet-base-v2") | |
# Ensure the DataFrame is loaded properly | |
try: | |
df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip') | |
except Exception as e: | |
st.error(f"Error reading JSON file: {e}") | |
# Generate GNN-based embeddings | |
with torch.no_grad(): | |
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu() | |
# Function to find the most similar video and recommend the top 10 based on GNN embeddings | |
def get_similar_and_recommend(input_text): | |
# Find the most similar video based on cosine similarity | |
embeddings_matrix = np.array(df["embeddings"].tolist()) | |
input_embedding = model_bert.encode([input_text])[0] | |
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0] | |
most_similar_index = np.argmax(similarities) # Find the most similar video | |
# Get all features of the most similar video | |
most_similar_video_features = df.iloc[most_similar_index].to_dict() | |
# Clean up certain fields | |
if "text_for_embedding" in most_similar_video_features: | |
del most_similar_video_features["text_for_embedding"] | |
if "embeddings" in most_similar_video_features: | |
del most_similar_video_features["embeddings"] | |
# Recommend the top 10 videos based on GNN embeddings | |
def recommend_top_10(given_video_index, all_video_embeddings): | |
dot_products = [ | |
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i]) | |
for i in range(all_video_embeddings.shape[0]) | |
] | |
dot_products[given_video_index] = -float("inf") # Exclude the most similar video | |
top_10_indices = np.argsort(dot_products)[::-1][:10] | |
return [df.iloc[idx].to_dict() for idx in top_10_indices] | |
top_10_recommended_videos_features = recommend_top_10(most_similar_index, all_video_embeddings) | |
# Apply search context to determine weights for GNN results | |
user_keywords = input_text.split() # Create a list of keywords from user input | |
video_weights = [] | |
weight = 1.0 # Initial weight factor | |
for keyword in user_keywords: | |
if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords | |
weight += 0.1 # Increase weight for matching keyword | |
# Calculate the weight for each GNN output | |
video_weights = [weight] * len(top_10_recommended_videos_features) | |
# Clean up certain fields in recommendations | |
for recommended_video in top_10_recommended_videos_features: | |
if "text_for_embedding" in recommended_video: | |
del recommended_video["text_for_embedding"] | |
if "embeddings" in recommended_video: | |
del recommended_video["embeddings"] | |
# Create the output JSON with the most similar video, final recommendations, and weights | |
output = { | |
"search_context": { | |
"input_text": input_text, # What the user provided | |
"weights": video_weights, # Weights for each GNN-based recommendation | |
}, | |
"most_similar_video": most_similar_video_features, | |
"final_recommendations": top_10_recommended_videos_features # Top 10 recommended videos | |
} | |
return output | |
# Create a Streamlit text input widget for entering text and retrieve the most similar video and top 10 recommended videos | |
user_input = st.text_input("Enter text to find the most similar video") | |
if user_input: | |
recommendations = get_similar_and_recommend(user_input) | |
st.json(recommendations) | |
def recommend(): | |
input_text = request.json['input_text'] | |
recommendations = get_similar_and_recommend(input_text) | |
return jsonify(recommendations) | |
# Create a simple Streamlit interface with instructions | |
st.title("Video Recommendation API") | |
st.write("Use POST requests to `/recommend` with JSON data {'input_text': '<your text>'}") | |
if __name__ == "__main__": | |
flask_app.run(host='0.0.0.0', port=8501) |