Spaces:
Sleeping
Sleeping
File size: 5,732 Bytes
e7e5b40 bb0ac24 e7e5b40 483de8a e7e5b40 ad3da90 e7e5b40 ad3da90 e7e5b40 bb0ac24 483de8a bb0ac24 483de8a bb0ac24 b7c66d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import torch
import pandas as pd
import numpy as np
from flask import Flask, request, jsonify
from torch_geometric.data import Data
from torch_geometric.nn import GATConv
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
flask_app = Flask(__name__)
class ModeratelySimplifiedGATConvModel(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.conv1 = GATConv(in_channels, hidden_channels, heads=2)
self.dropout1 = torch.nn.Dropout(0.45)
self.conv2 = GATConv(hidden_channels * 2, out_channels, heads=1)
def forward(self, x, edge_index, edge_attr=None):
x = self.conv1(x, edge_index, edge_attr)
x = torch.relu(x)
x = self.dropout1(x)
x = self.conv2(x, edge_index, edge_attr)
return x
# Load the dataset and the GATConv model
data = torch.load("graph_data.pt", map_location=torch.device("cpu"))
# Correct the state dictionary's key names
original_state_dict = torch.load("graph_model.pth", map_location=torch.device("cpu"))
corrected_state_dict = {}
for key, value in original_state_dict.items():
if "lin.weight" in key:
corrected_state_dict[key.replace("lin.weight", "lin_src.weight")] = value
corrected_state_dict[key.replace("lin.weight", "lin_dst.weight")] = value
else:
corrected_state_dict[key] = value
# Initialize the GATConv model with the corrected state dictionary
gatconv_model = ModeratelySimplifiedGATConvModel(
in_channels=data.x.shape[1], hidden_channels=32, out_channels=768
)
gatconv_model.load_state_dict(corrected_state_dict)
# Load the BERT-based sentence transformer model
model_bert = SentenceTransformer("all-mpnet-base-v2")
# Ensure the DataFrame is loaded properly
try:
df = pd.read_json("combined_data.json.gz", orient='records', lines=True, compression='gzip')
except Exception as e:
st.error(f"Error reading JSON file: {e}")
# Generate GNN-based embeddings
with torch.no_grad():
all_video_embeddings = gatconv_model(data.x, data.edge_index, data.edge_attr).cpu()
# Function to find the most similar video and recommend the top 10 based on GNN embeddings
def get_similar_and_recommend(input_text):
# Find the most similar video based on cosine similarity
embeddings_matrix = np.array(df["embeddings"].tolist())
input_embedding = model_bert.encode([input_text])[0]
similarities = cosine_similarity([input_embedding], embeddings_matrix)[0]
most_similar_index = np.argmax(similarities) # Find the most similar video
# Get all features of the most similar video
most_similar_video_features = df.iloc[most_similar_index].to_dict()
# Clean up certain fields
if "text_for_embedding" in most_similar_video_features:
del most_similar_video_features["text_for_embedding"]
if "embeddings" in most_similar_video_features:
del most_similar_video_features["embeddings"]
# Recommend the top 10 videos based on GNN embeddings
def recommend_top_10(given_video_index, all_video_embeddings):
dot_products = [
torch.dot(all_video_embeddings[given_video_index], all_video_embeddings[i])
for i in range(all_video_embeddings.shape[0])
]
dot_products[given_video_index] = -float("inf") # Exclude the most similar video
top_10_indices = np.argsort(dot_products)[::-1][:10]
return [df.iloc[idx].to_dict() for idx in top_10_indices]
top_10_recommended_videos_features = recommend_top_10(most_similar_index, all_video_embeddings)
# Apply search context to determine weights for GNN results
user_keywords = input_text.split() # Create a list of keywords from user input
video_weights = []
weight = 1.0 # Initial weight factor
for keyword in user_keywords:
if keyword.lower() in df["title"].str.lower().tolist(): # Check for matching keywords
weight += 0.1 # Increase weight for matching keyword
# Calculate the weight for each GNN output
video_weights = [weight] * len(top_10_recommended_videos_features)
# Clean up certain fields in recommendations
for recommended_video in top_10_recommended_videos_features:
if "text_for_embedding" in recommended_video:
del recommended_video["text_for_embedding"]
if "embeddings" in recommended_video:
del recommended_video["embeddings"]
# Create the output JSON with the most similar video, final recommendations, and weights
output = {
"search_context": {
"input_text": input_text, # What the user provided
"weights": video_weights, # Weights for each GNN-based recommendation
},
"most_similar_video": most_similar_video_features,
"final_recommendations": top_10_recommended_videos_features # Top 10 recommended videos
}
return output
# Create a Streamlit text input widget for entering text and retrieve the most similar video and top 10 recommended videos
user_input = st.text_input("Enter text to find the most similar video")
if user_input:
recommendations = get_similar_and_recommend(user_input)
st.json(recommendations)
@flask_app.route('/recommend', methods=['POST'])
def recommend():
input_text = request.json['input_text']
recommendations = get_similar_and_recommend(input_text)
return jsonify(recommendations)
# Create a simple Streamlit interface with instructions
st.title("Video Recommendation API")
st.write("Use POST requests to `/recommend` with JSON data {'input_text': '<your text>'}")
if __name__ == "__main__":
flask_app.run(host='0.0.0.0', port=8501) |