Understanding Physical Dynamics with Counterfactual World Modeling
Rahul Venkatesh*1 · Honglin Chen*1* · Kevin Feigelis*1 · Daniel M. Bear1 · Khaled Jedoui1 · Klemen Kotar1 · Felix Binder2 · Wanhee Lee1 · Sherry Liu1 · Kevin A. Smith3 · Judith E. Fan1 · Daniel L. K. Yamins1
(* equal contribution)
1Stanford 2UCSD 3MIT
This work presents the Counterfactual World Modeling (CWM) framework. CWM is capable of counterfactual prediction and extraction of vision structures useful for understanding physical dynamics.
📣 News
- 2024-06-01: Release project page and codes
🔨 Installation
git clone https://github.com/rahulvenkk/cwm_release.git
pip install -e .
✨ Usage
To download and use a pre-trianed model run the following
from cwm.model.model_factory import model_factory
model = model_factory.load_model('vitbase_8x8patch_3frames_1tube')
This will automatically initialize the appropriate model class and download the specified weights to your $CACHE
directory.
🔄 Pre-training
To train the model run the following script
./scripts/pretrain/3frame_patch8x8_mr0.90_gpu.sh