Spaces:
Sleeping
Sleeping
File size: 41,597 Bytes
4c38b03 b80977d 4c38b03 b80977d 4c38b03 64e09cc 7f15d74 64e09cc 4c38b03 f67b75b 4c38b03 f67b75b 4c38b03 b80977d a5319f5 dac4ddd b80977d b4c0f0a b80977d dac4ddd 4c38b03 22adc85 4c38b03 a12c950 4c38b03 64d4c08 4c38b03 a12c950 97b2b3c a12c950 97b2b3c 64d4c08 97b2b3c 22adc85 4c38b03 720cadb 4c38b03 64e09cc 4c38b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
import os
import sys
import json
import logging
import warnings
from pathlib import Path
from typing import List, Dict, Any, Optional, Tuple
import hashlib
import pickle
from datetime import datetime
import time
import asyncio
from concurrent.futures import ThreadPoolExecutor
from transformers import AutoModelForSeq2SeqLM # β
Needed for T5 and FLAN models
# Suppress warnings for cleaner output
warnings.filterwarnings("ignore")
# Core dependencies
import gradio as gr
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import faiss
import torch
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
BitsAndBytesConfig,
pipeline
)
# Medical knowledge validation
import re
import subprocess
import gradio as gr
def train_model():
result = subprocess.run(["python", "finetune_flan_t5.py"], capture_output=True, text=True)
if result.returncode == 0:
return "β
Model training complete!"
else:
return f"β Training failed:\n{result.stderr}"
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class MedicalFactChecker:
"""Enhanced medical fact checker with faster validation"""
def __init__(self):
self.medical_facts = self._load_medical_facts()
self.contraindications = self._load_contraindications()
self.dosage_patterns = self._compile_dosage_patterns()
self.definitive_patterns = [
re.compile(r, re.IGNORECASE) for r in [
r'always\s+(?:use|take|apply)',
r'never\s+(?:use|take|apply)',
r'will\s+(?:cure|heal|fix)',
r'guaranteed\s+to',
r'completely\s+(?:safe|effective)'
]
]
def _load_medical_facts(self) -> Dict[str, Any]:
"""Pre-loaded medical facts for Gaza context"""
return {
"burn_treatment": {
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes",
"no_ice": "Never apply ice directly to burns",
"clean_cloth": "Cover with clean, dry cloth if available"
},
"wound_care": {
"pressure": "Apply direct pressure to control bleeding",
"elevation": "Elevate injured limb if possible",
"clean_hands": "Clean hands before treating wounds when possible"
},
"infection_signs": {
"redness": "Increasing redness around wound",
"warmth": "Increased warmth at wound site",
"pus": "Yellow or green discharge",
"fever": "Fever may indicate systemic infection"
}
}
def _load_contraindications(self) -> Dict[str, List[str]]:
"""Pre-loaded contraindications for common treatments"""
return {
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
}
def _compile_dosage_patterns(self) -> List[re.Pattern]:
"""Pre-compiled dosage patterns"""
patterns = [
r'\d+\s*mg\b', # milligrams
r'\d+\s*g\b', # grams
r'\d+\s*ml\b', # milliliters
r'\d+\s*tablets?\b', # tablets
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency
r'every\s+\d+\s+hours?\b' # intervals
]
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
"""Enhanced medical accuracy check with Gaza-specific considerations"""
issues = []
warnings = []
accuracy_score = 0.0
# Check for contraindications (faster keyword matching)
response_lower = response.lower()
for medication, contra_list in self.contraindications.items():
if medication in response_lower:
for contra in contra_list:
if any(word in response_lower for word in contra.split()):
issues.append(f"Potential contraindication: {medication} with {contra}")
accuracy_score -= 0.3
break
# Context alignment using Jaccard similarity
if context:
resp_words = set(response_lower.split())
ctx_words = set(context.lower().split())
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
if context_similarity < 0.5: # Lowered threshold for Gaza context
warnings.append(f"Low context similarity: {context_similarity:.2f}")
accuracy_score -= 0.1
else:
context_similarity = 0.0
# Gaza-specific resource checks
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"]
if any(resource in response_lower for resource in gaza_resources):
warnings.append("Consider resource limitations in Gaza context")
accuracy_score -= 0.05
# Unsupported claims check
for pattern in self.definitive_patterns:
if pattern.search(response):
issues.append(f"Unsupported definitive claim detected")
accuracy_score -= 0.4
break
# Dosage validation
for pattern in self.dosage_patterns:
if pattern.search(response):
warnings.append("Dosage detected - verify with professional")
accuracy_score -= 0.1
break
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score))
return {
"confidence_score": confidence_score,
"issues": issues,
"warnings": warnings,
"context_similarity": context_similarity,
"is_safe": len(issues) == 0 and confidence_score > 0.5
}
class OptimizedGazaKnowledgeBase:
"""Optimized knowledge base that loads pre-made FAISS index and assets"""
def __init__(self, vector_store_dir: str = "./vector_store"):
self.vector_store_dir = Path(vector_store_dir)
self.faiss_index = None
self.embedding_model = None
self.chunks = []
self.metadata = []
self.is_initialized = False
def initialize(self):
"""Load pre-made FAISS index and associated data"""
try:
logger.info("π Loading pre-made FAISS index and assets...")
# 1. Load FAISS index
index_path = self.vector_store_dir / "index.faiss"
if not index_path.exists():
raise FileNotFoundError(f"FAISS index not found at {index_path}")
self.faiss_index = faiss.read_index(str(index_path))
logger.info(f"β
Loaded FAISS index: {self.faiss_index.ntotal} vectors, {self.faiss_index.d} dimensions")
# 2. Load chunks
chunks_path = self.vector_store_dir / "chunks.txt"
if not chunks_path.exists():
raise FileNotFoundError(f"Chunks file not found at {chunks_path}")
with open(chunks_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
# Parse chunks from the formatted file
current_chunk = ""
for line in lines:
line = line.strip()
if line.startswith("=== Chunk") and current_chunk:
self.chunks.append(current_chunk.strip())
current_chunk = ""
elif not line.startswith("===") and not line.startswith("Source:") and not line.startswith("Length:"):
current_chunk += line + " "
# Add the last chunk
if current_chunk:
self.chunks.append(current_chunk.strip())
logger.info(f"β
Loaded {len(self.chunks)} text chunks")
# 3. Load metadata
metadata_path = self.vector_store_dir / "metadata.pkl"
if metadata_path.exists():
with open(metadata_path, 'rb') as f:
metadata_dict = pickle.load(f)
if isinstance(metadata_dict, dict) and 'metadata' in metadata_dict:
self.metadata = metadata_dict['metadata']
logger.info(f"β
Loaded {len(self.metadata)} metadata entries")
else:
logger.warning("β οΈ Metadata format not recognized, using empty metadata")
self.metadata = [{}] * len(self.chunks)
else:
logger.warning("β οΈ No metadata file found, using empty metadata")
self.metadata = [{}] * len(self.chunks)
# 4. Initialize embedding model for query encoding
logger.info("π Loading embedding model for queries...")
self.embedding_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
logger.info("β
Embedding model loaded")
# 5. Verify data consistency
if len(self.chunks) != self.faiss_index.ntotal:
logger.warning(f"β οΈ Mismatch: {len(self.chunks)} chunks vs {self.faiss_index.ntotal} vectors")
# Trim chunks to match index size
self.chunks = self.chunks[:self.faiss_index.ntotal]
self.metadata = self.metadata[:self.faiss_index.ntotal]
logger.info(f"β
Trimmed to {len(self.chunks)} chunks to match index")
self.is_initialized = True
logger.info("π Knowledge base initialization complete!")
except Exception as e:
logger.error(f"β Failed to initialize knowledge base: {e}")
raise
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
"""Search using pre-made FAISS index"""
if not self.is_initialized:
raise RuntimeError("Knowledge base not initialized")
try:
# 1. Encode query
query_embedding = self.embedding_model.encode([query])
query_vector = np.array(query_embedding, dtype=np.float32)
# 2. Search FAISS index
distances, indices = self.faiss_index.search(query_vector, k)
# 3. Prepare results
results = []
for i, (distance, idx) in enumerate(zip(distances[0], indices[0])):
if idx >= 0 and idx < len(self.chunks): # Valid index
chunk_metadata = self.metadata[idx] if idx < len(self.metadata) else {}
result = {
"text": self.chunks[idx],
"score": float(1.0 / (1.0 + distance)), # Convert distance to similarity score
"source": chunk_metadata.get("source", "unknown"),
"chunk_index": int(idx),
"distance": float(distance),
"metadata": chunk_metadata
}
results.append(result)
logger.info(f"π Search for '{query[:50]}...' returned {len(results)} results")
return results
except Exception as e:
logger.error(f"β Search error: {e}")
return []
def get_stats(self) -> Dict[str, Any]:
"""Get knowledge base statistics"""
if not self.is_initialized:
return {"status": "not_initialized"}
return {
"status": "initialized",
"total_chunks": len(self.chunks),
"total_vectors": self.faiss_index.ntotal,
"embedding_dimension": self.faiss_index.d,
"index_type": type(self.faiss_index).__name__,
"sources": list(set(meta.get("source", "unknown") for meta in self.metadata))
}
class OptimizedGazaRAGSystem:
"""Optimized RAG system using pre-made assets"""
def __init__(self, vector_store_dir: str = "./vector_store"):
self.knowledge_base = OptimizedGazaKnowledgeBase(vector_store_dir)
self.fact_checker = MedicalFactChecker()
self.llm = None
self.tokenizer = None
self.system_prompt = self._create_system_prompt()
self.generation_pipeline = None
self.response_cache = {}
self.executor = ThreadPoolExecutor(max_workers=2)
def initialize(self):
"""Initialize the optimized RAG system"""
logger.info("π Initializing Optimized Gaza RAG System...")
self.knowledge_base.initialize()
logger.info("β
Optimized Gaza RAG System ready!")
def _initialize_llm(self):
"""Load flan-t5-base for CPU fallback"""
model_name = "google/flan-t5-base"
try:
logger.info(f"π Loading fallback CPU model: {model_name}")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.llm = AutoModelForSeq2SeqLM.from_pretrained(model_name)
self.generation_pipeline = pipeline(
"text2text-generation", # β
correct pipeline for T5
model=self.llm,
tokenizer=self.tokenizer
)
logger.info("β
FLAN-T5 model loaded successfully")
except Exception as e:
logger.error(f"β Error loading FLAN-T5 model: {e}")
self.llm = None
def _initialize_fallback_llm(self):
"""Enhanced fallback model with better error handling"""
try:
logger.info("π Loading fallback model...")
fallback_model = "microsoft/DialoGPT-small"
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
self.llm = AutoModelForCausalLM.from_pretrained(
fallback_model,
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.generation_pipeline = pipeline(
"text-generation",
model=self.llm,
tokenizer=self.tokenizer,
return_full_text=False
)
logger.info("β
Fallback model loaded successfully")
except Exception as e:
logger.error(f"β Fallback model failed: {e}")
self.llm = None
self.generation_pipeline = None
def _create_system_prompt(self) -> str:
"""Enhanced system prompt for Gaza context"""
return """You are a medical AI assistant specifically designed for Gaza healthcare workers operating under siege conditions.
CRITICAL GUIDELINES:
- Provide practical first aid guidance considering limited resources (water, electricity, medical supplies)
- Always prioritize patient safety and recommend professional medical help when available
- Consider Gaza's specific challenges: blockade, limited hospitals, frequent power outages
- Suggest alternative treatments when standard medical supplies are unavailable
- Never provide definitive diagnoses - only supportive care guidance
- Be culturally sensitive and aware of the humanitarian crisis context
RESOURCE CONSTRAINTS TO CONSIDER:
- Limited clean water availability
- Frequent electricity outages
- Restricted medical supply access
- Overwhelmed healthcare facilities
- Limited transportation for medical emergencies
Provide clear, actionable advice while emphasizing the need for professional medical care when possible."""
async def generate_response_async(self, query: str, progress_callback=None) -> Dict[str, Any]:
"""Async response generation with progress tracking"""
start_time = time.time()
if progress_callback:
progress_callback(0.1, "π Checking cache...")
# Check cache first
query_hash = hashlib.md5(query.encode()).hexdigest()
if query_hash in self.response_cache:
cached_response = self.response_cache[query_hash]
cached_response["cached"] = True
cached_response["response_time"] = 0.1
if progress_callback:
progress_callback(1.0, "πΎ Retrieved from cache!")
return cached_response
try:
if progress_callback:
progress_callback(0.2, "π€ Initializing LLM...")
# Initialize LLM only when needed
if self.llm is None:
await asyncio.get_event_loop().run_in_executor(
self.executor, self._initialize_llm
)
if progress_callback:
progress_callback(0.4, "π Searching knowledge base...")
# Enhanced knowledge retrieval using pre-made index
search_results = await asyncio.get_event_loop().run_in_executor(
self.executor, self.knowledge_base.search, query, 5
)
if progress_callback:
progress_callback(0.6, "π Preparing context...")
context = self._prepare_context(search_results)
if progress_callback:
progress_callback(0.8, "π§ Generating response...")
# Generate response
response = await asyncio.get_event_loop().run_in_executor(
self.executor, self._generate_response, query, context
)
if progress_callback:
progress_callback(0.9, "π‘οΈ Validating safety...")
# Enhanced safety check
safety_check = self.fact_checker.check_medical_accuracy(response, context)
# Prepare final response
final_response = self._prepare_final_response(
response,
search_results,
safety_check,
time.time() - start_time
)
# Cache the response (limit cache size)
if len(self.response_cache) < 100:
self.response_cache[query_hash] = final_response
if progress_callback:
progress_callback(1.0, "β
Complete!")
return final_response
except Exception as e:
logger.error(f"β Error generating response: {e}")
if progress_callback:
progress_callback(1.0, f"β Error: {str(e)}")
return self._create_error_response(str(e))
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str:
"""Enhanced context preparation with better formatting"""
if not search_results:
return "No specific medical guidance found in knowledge base. Provide general first aid principles."
context_parts = []
for i, result in enumerate(search_results, 1):
source = result.get('source', 'unknown')
text = result.get('text', '')
score = result.get('score', 0.0)
# Truncate long text but preserve important information
if len(text) > 400:
text = text[:400] + "..."
context_parts.append(f"[Source {i}: {source} - Relevance: {score:.2f}]\n{text}")
return "\n\n".join(context_parts)
def _generate_response(self, query: str, context: str) -> str:
"""Generate response using T5-style seq2seq model with Gaza-specific context"""
if self.llm is None or self.tokenizer is None:
return self._generate_fallback_response(query, context)
prompt = f"""{self.system_prompt}
MEDICAL KNOWLEDGE CONTEXT:
{context}
PATIENT QUESTION: {query}
RESPONSE (provide practical, Gaza-appropriate medical guidance):"""
try:
inputs = self.tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=512,
padding="max_length"
)
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
device = self.llm.device if hasattr(self.llm, "device") else "cpu"
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
with torch.no_grad():
outputs = self.llm.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=256,
temperature=0.3,
pad_token_id=self.tokenizer.eos_token_id,
do_sample=True,
repetition_penalty=1.15,
no_repeat_ngram_size=3
)
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
lines = response_text.split('\n')
unique_lines = []
for line in lines:
line = line.strip()
if line and line not in unique_lines and len(line) > 10:
unique_lines.append(line)
final_response = '\n'.join(unique_lines)
logger.info(f"π§ͺ Final cleaned response:\n{final_response}")
return final_response
except Exception as e:
logger.error(f"β Error in LLM generate(): {e}")
return self._generate_fallback_response(query, context)
def _generate_fallback_response(self, query: str, context: str) -> str:
"""Enhanced fallback response with Gaza-specific guidance"""
gaza_guidance = {
"burn": "For burns: Use clean, cool water if available. If water is scarce, use clean cloth. Avoid ice. Seek medical help urgently.",
"bleeding": "For bleeding: Apply direct pressure with clean cloth. Elevate if possible. If severe, seek immediate medical attention.",
"wound": "For wounds: Clean hands if possible. Apply pressure to stop bleeding. Cover with clean material. Watch for infection signs.",
"infection": "Signs of infection: Redness, warmth, swelling, pus, fever. Seek medical care immediately if available.",
"pain": "For pain management: Rest, elevation, cold/warm compress as appropriate. Avoid aspirin in children."
}
query_lower = query.lower()
for condition, guidance in gaza_guidance.items():
if condition in query_lower:
return f"{guidance}\n\nContext from medical sources:\n{context[:200]}..."
return f"Medical guidance for: {query}\n\nGeneral advice: Prioritize safety, seek professional help when available, consider resource limitations in Gaza.\n\nRelevant information:\n{context[:600]}..."
def _prepare_final_response(
self,
response: str,
search_results: List[Dict[str, Any]],
safety_check: Dict[str, Any],
response_time: float
) -> Dict[str, Any]:
"""Enhanced final response preparation with more metadata"""
# Add safety warnings if needed
if not safety_check["is_safe"]:
response = f"β οΈ MEDICAL CAUTION: {response}\n\nπ¨ Please verify this guidance with a medical professional when possible."
# Add Gaza-specific disclaimer
response += "\n\nπ Gaza Context: This guidance considers resource limitations. Adapt based on available supplies and seek professional medical care when accessible."
# Extract unique sources
sources = list(set(res.get("source", "unknown") for res in search_results)) if search_results else []
# Calculate confidence based on multiple factors
base_confidence = safety_check.get("confidence_score", 0.5)
context_bonus = 0.1 if search_results else 0.0
safety_penalty = 0.2 if not safety_check.get("is_safe", True) else 0.0
final_confidence = max(0.0, min(1.0, base_confidence + context_bonus - safety_penalty))
return {
"response": response,
"confidence": final_confidence,
"sources": sources,
"search_results_count": len(search_results),
"safety_issues": safety_check.get("issues", []),
"safety_warnings": safety_check.get("warnings", []),
"response_time": round(response_time, 2),
"timestamp": datetime.now().isoformat()[:19],
"cached": False
}
def _create_error_response(self, error_msg: str) -> Dict[str, Any]:
"""Enhanced error response with helpful information"""
return {
"response": f"β οΈ System Error: Unable to process your medical query at this time.\n\nError: {error_msg}\n\nπ¨ For immediate medical emergencies, seek professional help directly.\n\nπ Gaza Emergency Numbers:\n- Palestinian Red Crescent: 101\n- Civil Defense: 102",
"confidence": 0.0,
"sources": [],
"search_results_count": 0,
"safety_issues": ["System error occurred"],
"safety_warnings": ["Unable to validate medical accuracy"],
"response_time": 0.0,
"timestamp": datetime.now().isoformat()[:19],
"cached": False,
"error": True
}
# Global system instance
optimized_rag_system = None
def initialize_optimized_system(vector_store_dir: str = "./vector_store"):
"""Initialize optimized system with pre-made assets"""
global optimized_rag_system
if optimized_rag_system is None:
try:
optimized_rag_system = OptimizedGazaRAGSystem(vector_store_dir)
optimized_rag_system.initialize()
logger.info("β
Optimized Gaza RAG System initialized successfully")
except Exception as e:
logger.error(f"β Failed to initialize optimized system: {e}")
raise
return optimized_rag_system
def process_medical_query_with_progress(query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
"""Enhanced query processing with detailed progress tracking and status updates"""
if not query.strip():
return "Please enter a medical question.", "", "β οΈ No query provided"
try:
# Initialize system with progress
progress(0.05, desc="π§ Initializing optimized system...")
system = initialize_optimized_system()
# Create async event loop for progress tracking
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
def progress_callback(value, desc):
progress(value, desc=desc)
try:
# Run async generation with progress
result = loop.run_until_complete(
system.generate_response_async(query, progress_callback)
)
finally:
loop.close()
# Prepare response with enhanced metadata
response = result["response"]
# Prepare detailed metadata
metadata_parts = [
f"π― Confidence: {result['confidence']:.1%}",
f"β±οΈ Response: {result['response_time']}s",
f"π Sources: {result['search_results_count']} found"
]
if result.get('cached'):
metadata_parts.append("πΎ Cached")
if result.get('sources'):
metadata_parts.append(f"π Refs: {', '.join(result['sources'][:2])}")
metadata = " | ".join(metadata_parts)
# Prepare status with warnings/issues
status_parts = []
if result.get('safety_warnings'):
status_parts.append(f"β οΈ {len(result['safety_warnings'])} warnings")
if result.get('safety_issues'):
status_parts.append(f"π¨ {len(result['safety_issues'])} issues")
if not status_parts:
status_parts.append("β
Safe response")
status = " | ".join(status_parts)
return response, metadata, status
except Exception as e:
logger.error(f"β Error processing query: {e}")
error_response = f"β οΈ Error processing your query: {str(e)}\n\nπ¨ For medical emergencies, seek immediate professional help."
error_metadata = f"β Error at {datetime.now().strftime('%H:%M:%S')}"
error_status = "π¨ System error occurred"
return error_response, error_metadata, error_status
def get_system_stats() -> str:
"""Get system statistics for display"""
try:
system = initialize_optimized_system()
stats = system.knowledge_base.get_stats()
if stats["status"] == "initialized":
return f"""
π **System Statistics:**
- Status: β
Initialized
- Total Chunks: {stats['total_chunks']:,}
- Vector Dimension: {stats['embedding_dimension']}
- Index Type: {stats['index_type']}
- Sources: {len(stats['sources'])} documents
- Available Sources: {', '.join(stats['sources'][:5])}{'...' if len(stats['sources']) > 5 else ''}
"""
else:
return "π System Status: β Not Initialized"
except Exception as e:
return f"π System Status: β Error - {str(e)}"
def create_optimized_gradio_interface():
"""Create optimized Gradio interface with enhanced features"""
# Enhanced CSS with medical theme
css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
* {
font-family: 'Inter', sans-serif !important;
}
.gradio-container {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
min-height: 100vh;
}
.main-container {
background: rgba(255, 255, 255, 0.95);
backdrop-filter: blur(10px);
border-radius: 20px;
padding: 30px;
margin: 20px;
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
border: 1px solid rgba(255,255,255,0.2);
}
.header-section {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 15px;
padding: 25px;
margin-bottom: 25px;
text-align: center;
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3);
}
.query-container {
background: linear-gradient(135deg, #f8f9ff 0%, #e8f2ff 100%);
border-radius: 15px;
padding: 20px;
margin: 15px 0;
border: 2px solid #667eea;
transition: all 0.3s ease;
}
.response-container {
background: linear-gradient(135deg, #fff 0%, #f8f9ff 100%);
border-radius: 15px;
padding: 20px;
margin: 15px 0;
border: 2px solid #4CAF50;
min-height: 300px;
}
.submit-btn {
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%) !important;
color: white !important;
border: none !important;
border-radius: 12px !important;
padding: 15px 30px !important;
font-size: 16px !important;
font-weight: 600 !important;
cursor: pointer !important;
transition: all 0.3s ease !important;
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.3) !important;
}
.submit-btn:hover {
transform: translateY(-3px) !important;
box-shadow: 0 10px 30px rgba(76, 175, 80, 0.4) !important;
}
.stats-container {
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
border-radius: 12px;
padding: 15px;
margin: 10px 0;
border-left: 5px solid #2196F3;
font-size: 14px;
}
"""
with gr.Blocks(
css=css,
title="π₯ Optimized Gaza First Aid Assistant",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="green",
neutral_hue="slate"
)
) as interface:
# Header Section
with gr.Row(elem_classes=["main-container"]):
gr.HTML("""
<div class="header-section">
<h1 style="margin: 0; font-size: 2.5em; font-weight: 700;">
π₯ Optimized Gaza First Aid Assistant
</h1>
<h2 style="margin: 10px 0 0 0; font-size: 1.2em; font-weight: 400; opacity: 0.9;">
Powered by Pre-computed FAISS Index & 768-dim Embeddings
</h2>
<p style="margin: 15px 0 0 0; font-size: 1em; opacity: 0.8;">
Lightning-fast medical guidance using pre-processed knowledge base
</p>
</div>
""")
# System Stats
with gr.Row(elem_classes=["main-container"]):
with gr.Group(elem_classes=["stats-container"]):
stats_display = gr.Markdown(
value=get_system_stats(),
label="π System Status"
)
# Main Interface
with gr.Row(elem_classes=["main-container"]):
with gr.Column(scale=2):
# Query Input Section
with gr.Group(elem_classes=["query-container"]):
gr.Markdown("### π©Ί Medical Query Input")
query_input = gr.Textbox(
label="Describe your medical situation",
placeholder="Enter your first aid question or describe the medical emergency...",
lines=4
)
with gr.Row():
submit_btn = gr.Button(
"π Get Medical Guidance",
variant="primary",
elem_classes=["submit-btn"],
scale=3
)
clear_btn = gr.Button(
"ποΈ Clear",
variant="secondary",
scale=1
)
train_btn = gr.Button("Train")
train_output = gr.Textbox(label="Training Status", lines=10)
train_btn.click(train_model, outputs=train_output)
with gr.Column(scale=1):
# Quick Access
gr.Markdown("""
### β‘ Optimized Features
**π Performance:**
- Pre-computed FAISS index
- 768-dimensional embeddings
- Lightning-fast search
- Optimized for Gaza context
**π Knowledge Base:**
- WHO medical protocols
- ICRC war surgery guides
- MSF field manuals
- Gaza-specific adaptations
**π‘οΈ Safety Features:**
- Real-time fact checking
- Contraindication detection
- Gaza resource warnings
- Professional disclaimers
""")
# Response Section
with gr.Row(elem_classes=["main-container"]):
with gr.Column():
# Main Response
with gr.Group(elem_classes=["response-container"]):
gr.Markdown("### π©Ή Medical Guidance Response")
response_output = gr.Textbox(
label="AI Medical Guidance",
lines=15,
interactive=False,
placeholder="Your medical guidance will appear here..."
)
# Metadata and Status
with gr.Row():
with gr.Column(scale=1):
metadata_output = gr.Textbox(
label="π Response Metadata",
lines=2,
interactive=False,
placeholder="Response metadata will appear here..."
)
with gr.Column(scale=1):
status_output = gr.Textbox(
label="π‘οΈ Safety Status",
lines=2,
interactive=False,
placeholder="Safety validation status will appear here..."
)
# Examples Section
with gr.Row(elem_classes=["main-container"]):
gr.Markdown("### π‘ Example Medical Scenarios")
example_queries = [
"How to treat severe burns when clean water is extremely limited?",
"Managing gunshot wounds with only basic household supplies",
"Recognizing and treating infection in wounds without antibiotics",
"Emergency care for children during extended power outages",
"Treating compound fractures without proper medical equipment"
]
gr.Examples(
examples=example_queries,
inputs=query_input,
label="Click any example to try it:",
examples_per_page=5
)
# Event Handlers
submit_btn.click(
process_medical_query_with_progress,
inputs=query_input,
outputs=[response_output, metadata_output, status_output],
show_progress=True
)
query_input.submit(
process_medical_query_with_progress,
inputs=query_input,
outputs=[response_output, metadata_output, status_output],
show_progress=True
)
clear_btn.click(
lambda: ("", "", "", ""),
outputs=[query_input, response_output, metadata_output, status_output]
)
# Refresh stats button
refresh_stats_btn = gr.Button("π Refresh System Stats", variant="secondary")
refresh_stats_btn.click(
lambda: get_system_stats(),
outputs=stats_display
)
return interface
def main():
"""Enhanced main function with optimized system initialization"""
logger.info("π Starting Optimized Gaza First Aid Assistant")
try:
# Check for vector store directory
vector_store_dir = "./vector_store"
if not Path(vector_store_dir).exists():
# Try alternative paths
alt_paths = ["./results/vector_store", "./results/vector_store_extracted"]
for alt_path in alt_paths:
if Path(alt_path).exists():
vector_store_dir = alt_path
logger.info(f"π Found vector store at: {vector_store_dir}")
break
else:
raise FileNotFoundError("Vector store directory not found. Please ensure pre-made assets are available.")
# System initialization with detailed logging
logger.info(f"π§ Loading optimized system from: {vector_store_dir}")
system = initialize_optimized_system(vector_store_dir)
# Verify system components
stats = system.knowledge_base.get_stats()
logger.info(f"β
Knowledge base loaded: {stats['total_chunks']} chunks, {stats['embedding_dimension']}D")
logger.info(f"β
Sources: {len(stats['sources'])} documents")
logger.info("β
Medical fact checker ready")
logger.info("β
Optimized FAISS indexing active")
# Create and launch optimized interface
logger.info("π¨ Creating optimized Gradio interface...")
interface = create_optimized_gradio_interface()
logger.info("π Launching optimized interface...")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=6,
show_error=True,
quiet=False
)
except Exception as e:
logger.error(f"β Failed to start Optimized Gaza First Aid Assistant: {e}")
print(f"\nπ¨ STARTUP ERROR: {e}")
print("\nπ§ Troubleshooting Steps:")
print("1. Ensure vector_store directory exists with index.faiss, chunks.txt, and metadata.pkl")
print("2. Check if all dependencies are installed: pip install -r requirements.txt")
print("3. Verify sufficient memory is available (minimum 4GB RAM recommended)")
print("4. Check system logs for detailed error information")
print("\nπ For technical support, check the application logs above.")
sys.exit(1)
if __name__ == "__main__":
main()
|