Spaces:
Sleeping
Sleeping
Upload app (16).py
Browse files- app (16).py +1032 -0
app (16).py
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
import logging
|
5 |
+
import warnings
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import List, Dict, Any, Optional, Tuple
|
8 |
+
import hashlib
|
9 |
+
import pickle
|
10 |
+
from datetime import datetime
|
11 |
+
import time
|
12 |
+
import asyncio
|
13 |
+
from concurrent.futures import ThreadPoolExecutor
|
14 |
+
|
15 |
+
# Suppress warnings for cleaner output
|
16 |
+
warnings.filterwarnings("ignore")
|
17 |
+
|
18 |
+
# Core dependencies
|
19 |
+
import gradio as gr
|
20 |
+
import numpy as np
|
21 |
+
import pandas as pd
|
22 |
+
from sentence_transformers import SentenceTransformer
|
23 |
+
import faiss
|
24 |
+
import torch
|
25 |
+
from transformers import (
|
26 |
+
AutoTokenizer,
|
27 |
+
AutoModelForCausalLM,
|
28 |
+
BitsAndBytesConfig,
|
29 |
+
pipeline
|
30 |
+
)
|
31 |
+
|
32 |
+
# Medical knowledge validation
|
33 |
+
import re
|
34 |
+
|
35 |
+
# Configure logging
|
36 |
+
logging.basicConfig(
|
37 |
+
level=logging.INFO,
|
38 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
39 |
+
)
|
40 |
+
logger = logging.getLogger(__name__)
|
41 |
+
|
42 |
+
class MedicalFactChecker:
|
43 |
+
"""Enhanced medical fact checker with faster validation"""
|
44 |
+
|
45 |
+
def __init__(self):
|
46 |
+
self.medical_facts = self._load_medical_facts()
|
47 |
+
self.contraindications = self._load_contraindications()
|
48 |
+
self.dosage_patterns = self._compile_dosage_patterns()
|
49 |
+
self.definitive_patterns = [
|
50 |
+
re.compile(r, re.IGNORECASE) for r in [
|
51 |
+
r'always\s+(?:use|take|apply)',
|
52 |
+
r'never\s+(?:use|take|apply)',
|
53 |
+
r'will\s+(?:cure|heal|fix)',
|
54 |
+
r'guaranteed\s+to',
|
55 |
+
r'completely\s+(?:safe|effective)'
|
56 |
+
]
|
57 |
+
]
|
58 |
+
|
59 |
+
def _load_medical_facts(self) -> Dict[str, Any]:
|
60 |
+
"""Pre-loaded medical facts for Gaza context"""
|
61 |
+
return {
|
62 |
+
"burn_treatment": {
|
63 |
+
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes",
|
64 |
+
"no_ice": "Never apply ice directly to burns",
|
65 |
+
"clean_cloth": "Cover with clean, dry cloth if available"
|
66 |
+
},
|
67 |
+
"wound_care": {
|
68 |
+
"pressure": "Apply direct pressure to control bleeding",
|
69 |
+
"elevation": "Elevate injured limb if possible",
|
70 |
+
"clean_hands": "Clean hands before treating wounds when possible"
|
71 |
+
},
|
72 |
+
"infection_signs": {
|
73 |
+
"redness": "Increasing redness around wound",
|
74 |
+
"warmth": "Increased warmth at wound site",
|
75 |
+
"pus": "Yellow or green discharge",
|
76 |
+
"fever": "Fever may indicate systemic infection"
|
77 |
+
}
|
78 |
+
}
|
79 |
+
|
80 |
+
def _load_contraindications(self) -> Dict[str, List[str]]:
|
81 |
+
"""Pre-loaded contraindications for common treatments"""
|
82 |
+
return {
|
83 |
+
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
|
84 |
+
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
|
85 |
+
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
|
86 |
+
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
|
87 |
+
}
|
88 |
+
|
89 |
+
def _compile_dosage_patterns(self) -> List[re.Pattern]:
|
90 |
+
"""Pre-compiled dosage patterns"""
|
91 |
+
patterns = [
|
92 |
+
r'\d+\s*mg\b', # milligrams
|
93 |
+
r'\d+\s*g\b', # grams
|
94 |
+
r'\d+\s*ml\b', # milliliters
|
95 |
+
r'\d+\s*tablets?\b', # tablets
|
96 |
+
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency
|
97 |
+
r'every\s+\d+\s+hours?\b' # intervals
|
98 |
+
]
|
99 |
+
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
|
100 |
+
|
101 |
+
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
|
102 |
+
"""Enhanced medical accuracy check with Gaza-specific considerations"""
|
103 |
+
issues = []
|
104 |
+
warnings = []
|
105 |
+
accuracy_score = 0.0
|
106 |
+
|
107 |
+
# Check for contraindications (faster keyword matching)
|
108 |
+
response_lower = response.lower()
|
109 |
+
for medication, contra_list in self.contraindications.items():
|
110 |
+
if medication in response_lower:
|
111 |
+
for contra in contra_list:
|
112 |
+
if any(word in response_lower for word in contra.split()):
|
113 |
+
issues.append(f"Potential contraindication: {medication} with {contra}")
|
114 |
+
accuracy_score -= 0.3
|
115 |
+
break
|
116 |
+
|
117 |
+
# Context alignment using Jaccard similarity
|
118 |
+
if context:
|
119 |
+
resp_words = set(response_lower.split())
|
120 |
+
ctx_words = set(context.lower().split())
|
121 |
+
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
|
122 |
+
if context_similarity < 0.5: # Lowered threshold for Gaza context
|
123 |
+
warnings.append(f"Low context similarity: {context_similarity:.2f}")
|
124 |
+
accuracy_score -= 0.1
|
125 |
+
else:
|
126 |
+
context_similarity = 0.0
|
127 |
+
|
128 |
+
# Gaza-specific resource checks
|
129 |
+
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"]
|
130 |
+
if any(resource in response_lower for resource in gaza_resources):
|
131 |
+
warnings.append("Consider resource limitations in Gaza context")
|
132 |
+
accuracy_score -= 0.05
|
133 |
+
|
134 |
+
# Unsupported claims check
|
135 |
+
for pattern in self.definitive_patterns:
|
136 |
+
if pattern.search(response):
|
137 |
+
issues.append(f"Unsupported definitive claim detected")
|
138 |
+
accuracy_score -= 0.4
|
139 |
+
break
|
140 |
+
|
141 |
+
# Dosage validation
|
142 |
+
for pattern in self.dosage_patterns:
|
143 |
+
if pattern.search(response):
|
144 |
+
warnings.append("Dosage detected - verify with professional")
|
145 |
+
accuracy_score -= 0.1
|
146 |
+
break
|
147 |
+
|
148 |
+
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score))
|
149 |
+
|
150 |
+
return {
|
151 |
+
"confidence_score": confidence_score,
|
152 |
+
"issues": issues,
|
153 |
+
"warnings": warnings,
|
154 |
+
"context_similarity": context_similarity,
|
155 |
+
"is_safe": len(issues) == 0 and confidence_score > 0.5
|
156 |
+
}
|
157 |
+
|
158 |
+
class OptimizedGazaKnowledgeBase:
|
159 |
+
"""Optimized knowledge base that loads pre-made FAISS index and assets"""
|
160 |
+
|
161 |
+
def __init__(self, vector_store_dir: str = "./vector_store"):
|
162 |
+
self.vector_store_dir = Path(vector_store_dir)
|
163 |
+
self.faiss_index = None
|
164 |
+
self.embedding_model = None
|
165 |
+
self.chunks = []
|
166 |
+
self.metadata = []
|
167 |
+
self.is_initialized = False
|
168 |
+
|
169 |
+
def initialize(self):
|
170 |
+
"""Load pre-made FAISS index and associated data"""
|
171 |
+
try:
|
172 |
+
logger.info("π Loading pre-made FAISS index and assets...")
|
173 |
+
|
174 |
+
# 1. Load FAISS index
|
175 |
+
index_path = self.vector_store_dir / "index.faiss"
|
176 |
+
if not index_path.exists():
|
177 |
+
raise FileNotFoundError(f"FAISS index not found at {index_path}")
|
178 |
+
|
179 |
+
self.faiss_index = faiss.read_index(str(index_path))
|
180 |
+
logger.info(f"β
Loaded FAISS index: {self.faiss_index.ntotal} vectors, {self.faiss_index.d} dimensions")
|
181 |
+
|
182 |
+
# 2. Load chunks
|
183 |
+
chunks_path = self.vector_store_dir / "chunks.txt"
|
184 |
+
if not chunks_path.exists():
|
185 |
+
raise FileNotFoundError(f"Chunks file not found at {chunks_path}")
|
186 |
+
|
187 |
+
with open(chunks_path, 'r', encoding='utf-8') as f:
|
188 |
+
lines = f.readlines()
|
189 |
+
|
190 |
+
# Parse chunks from the formatted file
|
191 |
+
current_chunk = ""
|
192 |
+
for line in lines:
|
193 |
+
line = line.strip()
|
194 |
+
if line.startswith("=== Chunk") and current_chunk:
|
195 |
+
self.chunks.append(current_chunk.strip())
|
196 |
+
current_chunk = ""
|
197 |
+
elif not line.startswith("===") and not line.startswith("Source:") and not line.startswith("Length:"):
|
198 |
+
current_chunk += line + " "
|
199 |
+
|
200 |
+
# Add the last chunk
|
201 |
+
if current_chunk:
|
202 |
+
self.chunks.append(current_chunk.strip())
|
203 |
+
|
204 |
+
logger.info(f"β
Loaded {len(self.chunks)} text chunks")
|
205 |
+
|
206 |
+
# 3. Load metadata
|
207 |
+
metadata_path = self.vector_store_dir / "metadata.pkl"
|
208 |
+
if metadata_path.exists():
|
209 |
+
with open(metadata_path, 'rb') as f:
|
210 |
+
metadata_dict = pickle.load(f)
|
211 |
+
|
212 |
+
if isinstance(metadata_dict, dict) and 'metadata' in metadata_dict:
|
213 |
+
self.metadata = metadata_dict['metadata']
|
214 |
+
logger.info(f"β
Loaded {len(self.metadata)} metadata entries")
|
215 |
+
else:
|
216 |
+
logger.warning("β οΈ Metadata format not recognized, using empty metadata")
|
217 |
+
self.metadata = [{}] * len(self.chunks)
|
218 |
+
else:
|
219 |
+
logger.warning("β οΈ No metadata file found, using empty metadata")
|
220 |
+
self.metadata = [{}] * len(self.chunks)
|
221 |
+
|
222 |
+
# 4. Initialize embedding model for query encoding
|
223 |
+
logger.info("π Loading embedding model for queries...")
|
224 |
+
self.embedding_model = SentenceTransformer('sentence-transformers/all-mpnet-base-v2')
|
225 |
+
logger.info("β
Embedding model loaded")
|
226 |
+
|
227 |
+
# 5. Verify data consistency
|
228 |
+
if len(self.chunks) != self.faiss_index.ntotal:
|
229 |
+
logger.warning(f"β οΈ Mismatch: {len(self.chunks)} chunks vs {self.faiss_index.ntotal} vectors")
|
230 |
+
# Trim chunks to match index size
|
231 |
+
self.chunks = self.chunks[:self.faiss_index.ntotal]
|
232 |
+
self.metadata = self.metadata[:self.faiss_index.ntotal]
|
233 |
+
logger.info(f"β
Trimmed to {len(self.chunks)} chunks to match index")
|
234 |
+
|
235 |
+
self.is_initialized = True
|
236 |
+
logger.info("π Knowledge base initialization complete!")
|
237 |
+
|
238 |
+
except Exception as e:
|
239 |
+
logger.error(f"β Failed to initialize knowledge base: {e}")
|
240 |
+
raise
|
241 |
+
|
242 |
+
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]:
|
243 |
+
"""Search using pre-made FAISS index"""
|
244 |
+
if not self.is_initialized:
|
245 |
+
raise RuntimeError("Knowledge base not initialized")
|
246 |
+
|
247 |
+
try:
|
248 |
+
# 1. Encode query
|
249 |
+
query_embedding = self.embedding_model.encode([query])
|
250 |
+
query_vector = np.array(query_embedding, dtype=np.float32)
|
251 |
+
|
252 |
+
# 2. Search FAISS index
|
253 |
+
distances, indices = self.faiss_index.search(query_vector, k)
|
254 |
+
|
255 |
+
# 3. Prepare results
|
256 |
+
results = []
|
257 |
+
for i, (distance, idx) in enumerate(zip(distances[0], indices[0])):
|
258 |
+
if idx >= 0 and idx < len(self.chunks): # Valid index
|
259 |
+
chunk_metadata = self.metadata[idx] if idx < len(self.metadata) else {}
|
260 |
+
|
261 |
+
result = {
|
262 |
+
"text": self.chunks[idx],
|
263 |
+
"score": float(1.0 / (1.0 + distance)), # Convert distance to similarity score
|
264 |
+
"source": chunk_metadata.get("source", "unknown"),
|
265 |
+
"chunk_index": int(idx),
|
266 |
+
"distance": float(distance),
|
267 |
+
"metadata": chunk_metadata
|
268 |
+
}
|
269 |
+
results.append(result)
|
270 |
+
|
271 |
+
logger.info(f"π Search for '{query[:50]}...' returned {len(results)} results")
|
272 |
+
return results
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
logger.error(f"β Search error: {e}")
|
276 |
+
return []
|
277 |
+
|
278 |
+
def get_stats(self) -> Dict[str, Any]:
|
279 |
+
"""Get knowledge base statistics"""
|
280 |
+
if not self.is_initialized:
|
281 |
+
return {"status": "not_initialized"}
|
282 |
+
|
283 |
+
return {
|
284 |
+
"status": "initialized",
|
285 |
+
"total_chunks": len(self.chunks),
|
286 |
+
"total_vectors": self.faiss_index.ntotal,
|
287 |
+
"embedding_dimension": self.faiss_index.d,
|
288 |
+
"index_type": type(self.faiss_index).__name__,
|
289 |
+
"sources": list(set(meta.get("source", "unknown") for meta in self.metadata))
|
290 |
+
}
|
291 |
+
|
292 |
+
class OptimizedGazaRAGSystem:
|
293 |
+
"""Optimized RAG system using pre-made assets"""
|
294 |
+
|
295 |
+
def __init__(self, vector_store_dir: str = "./vector_store"):
|
296 |
+
self.knowledge_base = OptimizedGazaKnowledgeBase(vector_store_dir)
|
297 |
+
self.fact_checker = MedicalFactChecker()
|
298 |
+
self.llm = None
|
299 |
+
self.tokenizer = None
|
300 |
+
self.system_prompt = self._create_system_prompt()
|
301 |
+
self.generation_pipeline = None
|
302 |
+
self.response_cache = {}
|
303 |
+
self.executor = ThreadPoolExecutor(max_workers=2)
|
304 |
+
|
305 |
+
def initialize(self):
|
306 |
+
"""Initialize the optimized RAG system"""
|
307 |
+
logger.info("π Initializing Optimized Gaza RAG System...")
|
308 |
+
self.knowledge_base.initialize()
|
309 |
+
logger.info("β
Optimized Gaza RAG System ready!")
|
310 |
+
|
311 |
+
def _initialize_llm(self):
|
312 |
+
"""Enhanced LLM initialization with better error handling"""
|
313 |
+
if self.llm is not None:
|
314 |
+
return
|
315 |
+
|
316 |
+
model_name = "microsoft/Phi-3-mini-4k-instruct"
|
317 |
+
try:
|
318 |
+
logger.info(f"π Loading LLM: {model_name}")
|
319 |
+
|
320 |
+
# Enhanced quantization configuration
|
321 |
+
quantization_config = BitsAndBytesConfig(
|
322 |
+
load_in_4bit=True,
|
323 |
+
bnb_4bit_use_double_quant=True,
|
324 |
+
bnb_4bit_quant_type="nf4",
|
325 |
+
bnb_4bit_compute_dtype=torch.float16,
|
326 |
+
)
|
327 |
+
|
328 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
329 |
+
model_name,
|
330 |
+
trust_remote_code=True,
|
331 |
+
padding_side="left"
|
332 |
+
)
|
333 |
+
|
334 |
+
if self.tokenizer.pad_token is None:
|
335 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
336 |
+
|
337 |
+
self.llm = AutoModelForCausalLM.from_pretrained(
|
338 |
+
model_name,
|
339 |
+
quantization_config=quantization_config,
|
340 |
+
device_map="auto",
|
341 |
+
trust_remote_code=True,
|
342 |
+
torch_dtype=torch.float16,
|
343 |
+
low_cpu_mem_usage=True
|
344 |
+
)
|
345 |
+
|
346 |
+
self.generation_pipeline = pipeline(
|
347 |
+
"text-generation",
|
348 |
+
model=self.llm,
|
349 |
+
tokenizer=self.tokenizer,
|
350 |
+
device_map="auto",
|
351 |
+
torch_dtype=torch.float16,
|
352 |
+
return_full_text=False
|
353 |
+
)
|
354 |
+
|
355 |
+
logger.info("β
LLM loaded successfully")
|
356 |
+
|
357 |
+
except Exception as e:
|
358 |
+
logger.error(f"β Error loading primary model: {e}")
|
359 |
+
self._initialize_fallback_llm()
|
360 |
+
|
361 |
+
def _initialize_fallback_llm(self):
|
362 |
+
"""Enhanced fallback model with better error handling"""
|
363 |
+
try:
|
364 |
+
logger.info("π Loading fallback model...")
|
365 |
+
|
366 |
+
fallback_model = "microsoft/DialoGPT-small"
|
367 |
+
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model)
|
368 |
+
self.llm = AutoModelForCausalLM.from_pretrained(
|
369 |
+
fallback_model,
|
370 |
+
torch_dtype=torch.float32,
|
371 |
+
low_cpu_mem_usage=True
|
372 |
+
)
|
373 |
+
|
374 |
+
if self.tokenizer.pad_token is None:
|
375 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
376 |
+
|
377 |
+
self.generation_pipeline = pipeline(
|
378 |
+
"text-generation",
|
379 |
+
model=self.llm,
|
380 |
+
tokenizer=self.tokenizer,
|
381 |
+
return_full_text=False
|
382 |
+
)
|
383 |
+
|
384 |
+
logger.info("β
Fallback model loaded successfully")
|
385 |
+
|
386 |
+
except Exception as e:
|
387 |
+
logger.error(f"β Fallback model failed: {e}")
|
388 |
+
self.llm = None
|
389 |
+
self.generation_pipeline = None
|
390 |
+
|
391 |
+
def _create_system_prompt(self) -> str:
|
392 |
+
"""Enhanced system prompt for Gaza context"""
|
393 |
+
return """You are a medical AI assistant specifically designed for Gaza healthcare workers operating under siege conditions.
|
394 |
+
|
395 |
+
CRITICAL GUIDELINES:
|
396 |
+
- Provide practical first aid guidance considering limited resources (water, electricity, medical supplies)
|
397 |
+
- Always prioritize patient safety and recommend professional medical help when available
|
398 |
+
- Consider Gaza's specific challenges: blockade, limited hospitals, frequent power outages
|
399 |
+
- Suggest alternative treatments when standard medical supplies are unavailable
|
400 |
+
- Never provide definitive diagnoses - only supportive care guidance
|
401 |
+
- Be culturally sensitive and aware of the humanitarian crisis context
|
402 |
+
|
403 |
+
RESOURCE CONSTRAINTS TO CONSIDER:
|
404 |
+
- Limited clean water availability
|
405 |
+
- Frequent electricity outages
|
406 |
+
- Restricted medical supply access
|
407 |
+
- Overwhelmed healthcare facilities
|
408 |
+
- Limited transportation for medical emergencies
|
409 |
+
|
410 |
+
Provide clear, actionable advice while emphasizing the need for professional medical care when possible."""
|
411 |
+
|
412 |
+
async def generate_response_async(self, query: str, progress_callback=None) -> Dict[str, Any]:
|
413 |
+
"""Async response generation with progress tracking"""
|
414 |
+
start_time = time.time()
|
415 |
+
|
416 |
+
if progress_callback:
|
417 |
+
progress_callback(0.1, "π Checking cache...")
|
418 |
+
|
419 |
+
# Check cache first
|
420 |
+
query_hash = hashlib.md5(query.encode()).hexdigest()
|
421 |
+
if query_hash in self.response_cache:
|
422 |
+
cached_response = self.response_cache[query_hash]
|
423 |
+
cached_response["cached"] = True
|
424 |
+
cached_response["response_time"] = 0.1
|
425 |
+
if progress_callback:
|
426 |
+
progress_callback(1.0, "πΎ Retrieved from cache!")
|
427 |
+
return cached_response
|
428 |
+
|
429 |
+
try:
|
430 |
+
if progress_callback:
|
431 |
+
progress_callback(0.2, "π€ Initializing LLM...")
|
432 |
+
|
433 |
+
# Initialize LLM only when needed
|
434 |
+
if self.llm is None:
|
435 |
+
await asyncio.get_event_loop().run_in_executor(
|
436 |
+
self.executor, self._initialize_llm
|
437 |
+
)
|
438 |
+
|
439 |
+
if progress_callback:
|
440 |
+
progress_callback(0.4, "π Searching knowledge base...")
|
441 |
+
|
442 |
+
# Enhanced knowledge retrieval using pre-made index
|
443 |
+
search_results = await asyncio.get_event_loop().run_in_executor(
|
444 |
+
self.executor, self.knowledge_base.search, query, 5
|
445 |
+
)
|
446 |
+
|
447 |
+
if progress_callback:
|
448 |
+
progress_callback(0.6, "π Preparing context...")
|
449 |
+
|
450 |
+
context = self._prepare_context(search_results)
|
451 |
+
|
452 |
+
if progress_callback:
|
453 |
+
progress_callback(0.8, "π§ Generating response...")
|
454 |
+
|
455 |
+
# Generate response
|
456 |
+
response = await asyncio.get_event_loop().run_in_executor(
|
457 |
+
self.executor, self._generate_response, query, context
|
458 |
+
)
|
459 |
+
|
460 |
+
if progress_callback:
|
461 |
+
progress_callback(0.9, "π‘οΈ Validating safety...")
|
462 |
+
|
463 |
+
# Enhanced safety check
|
464 |
+
safety_check = self.fact_checker.check_medical_accuracy(response, context)
|
465 |
+
|
466 |
+
# Prepare final response
|
467 |
+
final_response = self._prepare_final_response(
|
468 |
+
response,
|
469 |
+
search_results,
|
470 |
+
safety_check,
|
471 |
+
time.time() - start_time
|
472 |
+
)
|
473 |
+
|
474 |
+
# Cache the response (limit cache size)
|
475 |
+
if len(self.response_cache) < 100:
|
476 |
+
self.response_cache[query_hash] = final_response
|
477 |
+
|
478 |
+
if progress_callback:
|
479 |
+
progress_callback(1.0, "β
Complete!")
|
480 |
+
|
481 |
+
return final_response
|
482 |
+
|
483 |
+
except Exception as e:
|
484 |
+
logger.error(f"β Error generating response: {e}")
|
485 |
+
if progress_callback:
|
486 |
+
progress_callback(1.0, f"β Error: {str(e)}")
|
487 |
+
return self._create_error_response(str(e))
|
488 |
+
|
489 |
+
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str:
|
490 |
+
"""Enhanced context preparation with better formatting"""
|
491 |
+
if not search_results:
|
492 |
+
return "No specific medical guidance found in knowledge base. Provide general first aid principles."
|
493 |
+
|
494 |
+
context_parts = []
|
495 |
+
for i, result in enumerate(search_results, 1):
|
496 |
+
source = result.get('source', 'unknown')
|
497 |
+
text = result.get('text', '')
|
498 |
+
score = result.get('score', 0.0)
|
499 |
+
|
500 |
+
# Truncate long text but preserve important information
|
501 |
+
if len(text) > 400:
|
502 |
+
text = text[:400] + "..."
|
503 |
+
|
504 |
+
context_parts.append(f"[Source {i}: {source} - Relevance: {score:.2f}]\n{text}")
|
505 |
+
|
506 |
+
return "\n\n".join(context_parts)
|
507 |
+
|
508 |
+
def _generate_response(self, query: str, context: str) -> str:
|
509 |
+
"""Enhanced response generation using model.generate() to avoid DynamicCache errors"""
|
510 |
+
if self.llm is None or self.tokenizer is None:
|
511 |
+
return self._generate_fallback_response(query, context)
|
512 |
+
|
513 |
+
# Build prompt with Gaza-specific context
|
514 |
+
prompt = f"""{self.system_prompt}
|
515 |
+
|
516 |
+
MEDICAL KNOWLEDGE CONTEXT:
|
517 |
+
{context}
|
518 |
+
|
519 |
+
PATIENT QUESTION: {query}
|
520 |
+
|
521 |
+
RESPONSE (provide practical, Gaza-appropriate medical guidance):"""
|
522 |
+
|
523 |
+
try:
|
524 |
+
# Tokenize and move to correct device
|
525 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048)
|
526 |
+
if hasattr(self.llm, 'device'):
|
527 |
+
inputs = inputs.to(self.llm.device)
|
528 |
+
|
529 |
+
# Generate the response
|
530 |
+
with torch.no_grad():
|
531 |
+
outputs = self.llm.generate(
|
532 |
+
**inputs,
|
533 |
+
max_new_tokens=300,
|
534 |
+
temperature=0.3,
|
535 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
536 |
+
do_sample=True,
|
537 |
+
repetition_penalty=1.15,
|
538 |
+
no_repeat_ngram_size=3
|
539 |
+
)
|
540 |
+
|
541 |
+
# Decode and clean up
|
542 |
+
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
543 |
+
|
544 |
+
# Extract only the generated part
|
545 |
+
if "RESPONSE (provide practical, Gaza-appropriate medical guidance):" in response_text:
|
546 |
+
response_text = response_text.split("RESPONSE (provide practical, Gaza-appropriate medical guidance):")[1]
|
547 |
+
|
548 |
+
# Clean up the response
|
549 |
+
lines = response_text.split('\n')
|
550 |
+
unique_lines = []
|
551 |
+
for line in lines:
|
552 |
+
line = line.strip()
|
553 |
+
if line and line not in unique_lines and len(line) > 10: # Filter out very short lines
|
554 |
+
unique_lines.append(line)
|
555 |
+
|
556 |
+
return '\n'.join(unique_lines[:10]) # Limit to 10 lines
|
557 |
+
|
558 |
+
except Exception as e:
|
559 |
+
logger.error(f"β Error in LLM generate(): {e}")
|
560 |
+
return self._generate_fallback_response(query, context)
|
561 |
+
|
562 |
+
def _generate_fallback_response(self, query: str, context: str) -> str:
|
563 |
+
"""Enhanced fallback response with Gaza-specific guidance"""
|
564 |
+
gaza_guidance = {
|
565 |
+
"burn": "For burns: Use clean, cool water if available. If water is scarce, use clean cloth. Avoid ice. Seek medical help urgently.",
|
566 |
+
"bleeding": "For bleeding: Apply direct pressure with clean cloth. Elevate if possible. If severe, seek immediate medical attention.",
|
567 |
+
"wound": "For wounds: Clean hands if possible. Apply pressure to stop bleeding. Cover with clean material. Watch for infection signs.",
|
568 |
+
"infection": "Signs of infection: Redness, warmth, swelling, pus, fever. Seek medical care immediately if available.",
|
569 |
+
"pain": "For pain management: Rest, elevation, cold/warm compress as appropriate. Avoid aspirin in children."
|
570 |
+
}
|
571 |
+
|
572 |
+
query_lower = query.lower()
|
573 |
+
for condition, guidance in gaza_guidance.items():
|
574 |
+
if condition in query_lower:
|
575 |
+
return f"{guidance}\n\nContext from medical sources:\n{context[:200]}..."
|
576 |
+
|
577 |
+
return f"Medical guidance for: {query}\n\nGeneral advice: Prioritize safety, seek professional help when available, consider resource limitations in Gaza.\n\nRelevant information:\n{context[:300]}..."
|
578 |
+
|
579 |
+
def _prepare_final_response(
|
580 |
+
self,
|
581 |
+
response: str,
|
582 |
+
search_results: List[Dict[str, Any]],
|
583 |
+
safety_check: Dict[str, Any],
|
584 |
+
response_time: float
|
585 |
+
) -> Dict[str, Any]:
|
586 |
+
"""Enhanced final response preparation with more metadata"""
|
587 |
+
|
588 |
+
# Add safety warnings if needed
|
589 |
+
if not safety_check["is_safe"]:
|
590 |
+
response = f"β οΈ MEDICAL CAUTION: {response}\n\nπ¨ Please verify this guidance with a medical professional when possible."
|
591 |
+
|
592 |
+
# Add Gaza-specific disclaimer
|
593 |
+
response += "\n\nπ Gaza Context: This guidance considers resource limitations. Adapt based on available supplies and seek professional medical care when accessible."
|
594 |
+
|
595 |
+
# Extract unique sources
|
596 |
+
sources = list(set(res.get("source", "unknown") for res in search_results)) if search_results else []
|
597 |
+
|
598 |
+
# Calculate confidence based on multiple factors
|
599 |
+
base_confidence = safety_check.get("confidence_score", 0.5)
|
600 |
+
context_bonus = 0.1 if search_results else 0.0
|
601 |
+
safety_penalty = 0.2 if not safety_check.get("is_safe", True) else 0.0
|
602 |
+
|
603 |
+
final_confidence = max(0.0, min(1.0, base_confidence + context_bonus - safety_penalty))
|
604 |
+
|
605 |
+
return {
|
606 |
+
"response": response,
|
607 |
+
"confidence": final_confidence,
|
608 |
+
"sources": sources,
|
609 |
+
"search_results_count": len(search_results),
|
610 |
+
"safety_issues": safety_check.get("issues", []),
|
611 |
+
"safety_warnings": safety_check.get("warnings", []),
|
612 |
+
"response_time": round(response_time, 2),
|
613 |
+
"timestamp": datetime.now().isoformat()[:19],
|
614 |
+
"cached": False
|
615 |
+
}
|
616 |
+
|
617 |
+
def _create_error_response(self, error_msg: str) -> Dict[str, Any]:
|
618 |
+
"""Enhanced error response with helpful information"""
|
619 |
+
return {
|
620 |
+
"response": f"β οΈ System Error: Unable to process your medical query at this time.\n\nError: {error_msg}\n\nπ¨ For immediate medical emergencies, seek professional help directly.\n\nπ Gaza Emergency Numbers:\n- Palestinian Red Crescent: 101\n- Civil Defense: 102",
|
621 |
+
"confidence": 0.0,
|
622 |
+
"sources": [],
|
623 |
+
"search_results_count": 0,
|
624 |
+
"safety_issues": ["System error occurred"],
|
625 |
+
"safety_warnings": ["Unable to validate medical accuracy"],
|
626 |
+
"response_time": 0.0,
|
627 |
+
"timestamp": datetime.now().isoformat()[:19],
|
628 |
+
"cached": False,
|
629 |
+
"error": True
|
630 |
+
}
|
631 |
+
|
632 |
+
# Global system instance
|
633 |
+
optimized_rag_system = None
|
634 |
+
|
635 |
+
def initialize_optimized_system(vector_store_dir: str = "./vector_store"):
|
636 |
+
"""Initialize optimized system with pre-made assets"""
|
637 |
+
global optimized_rag_system
|
638 |
+
if optimized_rag_system is None:
|
639 |
+
try:
|
640 |
+
optimized_rag_system = OptimizedGazaRAGSystem(vector_store_dir)
|
641 |
+
optimized_rag_system.initialize()
|
642 |
+
logger.info("β
Optimized Gaza RAG System initialized successfully")
|
643 |
+
except Exception as e:
|
644 |
+
logger.error(f"β Failed to initialize optimized system: {e}")
|
645 |
+
raise
|
646 |
+
return optimized_rag_system
|
647 |
+
|
648 |
+
def process_medical_query_with_progress(query: str, progress=gr.Progress()) -> Tuple[str, str, str]:
|
649 |
+
"""Enhanced query processing with detailed progress tracking and status updates"""
|
650 |
+
if not query.strip():
|
651 |
+
return "Please enter a medical question.", "", "β οΈ No query provided"
|
652 |
+
|
653 |
+
try:
|
654 |
+
# Initialize system with progress
|
655 |
+
progress(0.05, desc="π§ Initializing optimized system...")
|
656 |
+
system = initialize_optimized_system()
|
657 |
+
|
658 |
+
# Create async event loop for progress tracking
|
659 |
+
loop = asyncio.new_event_loop()
|
660 |
+
asyncio.set_event_loop(loop)
|
661 |
+
|
662 |
+
def progress_callback(value, desc):
|
663 |
+
progress(value, desc=desc)
|
664 |
+
|
665 |
+
try:
|
666 |
+
# Run async generation with progress
|
667 |
+
result = loop.run_until_complete(
|
668 |
+
system.generate_response_async(query, progress_callback)
|
669 |
+
)
|
670 |
+
finally:
|
671 |
+
loop.close()
|
672 |
+
|
673 |
+
# Prepare response with enhanced metadata
|
674 |
+
response = result["response"]
|
675 |
+
|
676 |
+
# Prepare detailed metadata
|
677 |
+
metadata_parts = [
|
678 |
+
f"π― Confidence: {result['confidence']:.1%}",
|
679 |
+
f"β±οΈ Response: {result['response_time']}s",
|
680 |
+
f"π Sources: {result['search_results_count']} found"
|
681 |
+
]
|
682 |
+
|
683 |
+
if result.get('cached'):
|
684 |
+
metadata_parts.append("πΎ Cached")
|
685 |
+
|
686 |
+
if result.get('sources'):
|
687 |
+
metadata_parts.append(f"π Refs: {', '.join(result['sources'][:2])}")
|
688 |
+
|
689 |
+
metadata = " | ".join(metadata_parts)
|
690 |
+
|
691 |
+
# Prepare status with warnings/issues
|
692 |
+
status_parts = []
|
693 |
+
if result.get('safety_warnings'):
|
694 |
+
status_parts.append(f"β οΈ {len(result['safety_warnings'])} warnings")
|
695 |
+
if result.get('safety_issues'):
|
696 |
+
status_parts.append(f"π¨ {len(result['safety_issues'])} issues")
|
697 |
+
if not status_parts:
|
698 |
+
status_parts.append("β
Safe response")
|
699 |
+
|
700 |
+
status = " | ".join(status_parts)
|
701 |
+
|
702 |
+
return response, metadata, status
|
703 |
+
|
704 |
+
except Exception as e:
|
705 |
+
logger.error(f"β Error processing query: {e}")
|
706 |
+
error_response = f"β οΈ Error processing your query: {str(e)}\n\nπ¨ For medical emergencies, seek immediate professional help."
|
707 |
+
error_metadata = f"β Error at {datetime.now().strftime('%H:%M:%S')}"
|
708 |
+
error_status = "π¨ System error occurred"
|
709 |
+
return error_response, error_metadata, error_status
|
710 |
+
|
711 |
+
def get_system_stats() -> str:
|
712 |
+
"""Get system statistics for display"""
|
713 |
+
try:
|
714 |
+
system = initialize_optimized_system()
|
715 |
+
stats = system.knowledge_base.get_stats()
|
716 |
+
|
717 |
+
if stats["status"] == "initialized":
|
718 |
+
return f"""
|
719 |
+
π **System Statistics:**
|
720 |
+
- Status: β
Initialized
|
721 |
+
- Total Chunks: {stats['total_chunks']:,}
|
722 |
+
- Vector Dimension: {stats['embedding_dimension']}
|
723 |
+
- Index Type: {stats['index_type']}
|
724 |
+
- Sources: {len(stats['sources'])} documents
|
725 |
+
- Available Sources: {', '.join(stats['sources'][:5])}{'...' if len(stats['sources']) > 5 else ''}
|
726 |
+
"""
|
727 |
+
else:
|
728 |
+
return "π System Status: β Not Initialized"
|
729 |
+
except Exception as e:
|
730 |
+
return f"π System Status: β Error - {str(e)}"
|
731 |
+
|
732 |
+
def create_optimized_gradio_interface():
|
733 |
+
"""Create optimized Gradio interface with enhanced features"""
|
734 |
+
|
735 |
+
# Enhanced CSS with medical theme
|
736 |
+
css = """
|
737 |
+
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700&display=swap');
|
738 |
+
|
739 |
+
* {
|
740 |
+
font-family: 'Inter', sans-serif !important;
|
741 |
+
}
|
742 |
+
|
743 |
+
.gradio-container {
|
744 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
745 |
+
min-height: 100vh;
|
746 |
+
}
|
747 |
+
|
748 |
+
.main-container {
|
749 |
+
background: rgba(255, 255, 255, 0.95);
|
750 |
+
backdrop-filter: blur(10px);
|
751 |
+
border-radius: 20px;
|
752 |
+
padding: 30px;
|
753 |
+
margin: 20px;
|
754 |
+
box-shadow: 0 20px 40px rgba(0,0,0,0.1);
|
755 |
+
border: 1px solid rgba(255,255,255,0.2);
|
756 |
+
}
|
757 |
+
|
758 |
+
.header-section {
|
759 |
+
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
760 |
+
color: white;
|
761 |
+
border-radius: 15px;
|
762 |
+
padding: 25px;
|
763 |
+
margin-bottom: 25px;
|
764 |
+
text-align: center;
|
765 |
+
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3);
|
766 |
+
}
|
767 |
+
|
768 |
+
.query-container {
|
769 |
+
background: linear-gradient(135deg, #f8f9ff 0%, #e8f2ff 100%);
|
770 |
+
border-radius: 15px;
|
771 |
+
padding: 20px;
|
772 |
+
margin: 15px 0;
|
773 |
+
border: 2px solid #667eea;
|
774 |
+
transition: all 0.3s ease;
|
775 |
+
}
|
776 |
+
|
777 |
+
.response-container {
|
778 |
+
background: linear-gradient(135deg, #fff 0%, #f8f9ff 100%);
|
779 |
+
border-radius: 15px;
|
780 |
+
padding: 20px;
|
781 |
+
margin: 15px 0;
|
782 |
+
border: 2px solid #4CAF50;
|
783 |
+
min-height: 300px;
|
784 |
+
}
|
785 |
+
|
786 |
+
.submit-btn {
|
787 |
+
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%) !important;
|
788 |
+
color: white !important;
|
789 |
+
border: none !important;
|
790 |
+
border-radius: 12px !important;
|
791 |
+
padding: 15px 30px !important;
|
792 |
+
font-size: 16px !important;
|
793 |
+
font-weight: 600 !important;
|
794 |
+
cursor: pointer !important;
|
795 |
+
transition: all 0.3s ease !important;
|
796 |
+
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.3) !important;
|
797 |
+
}
|
798 |
+
|
799 |
+
.submit-btn:hover {
|
800 |
+
transform: translateY(-3px) !important;
|
801 |
+
box-shadow: 0 10px 30px rgba(76, 175, 80, 0.4) !important;
|
802 |
+
}
|
803 |
+
|
804 |
+
.stats-container {
|
805 |
+
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%);
|
806 |
+
border-radius: 12px;
|
807 |
+
padding: 15px;
|
808 |
+
margin: 10px 0;
|
809 |
+
border-left: 5px solid #2196F3;
|
810 |
+
font-size: 14px;
|
811 |
+
}
|
812 |
+
"""
|
813 |
+
|
814 |
+
with gr.Blocks(
|
815 |
+
css=css,
|
816 |
+
title="π₯ Optimized Gaza First Aid Assistant",
|
817 |
+
theme=gr.themes.Soft(
|
818 |
+
primary_hue="blue",
|
819 |
+
secondary_hue="green",
|
820 |
+
neutral_hue="slate"
|
821 |
+
)
|
822 |
+
) as interface:
|
823 |
+
|
824 |
+
# Header Section
|
825 |
+
with gr.Row(elem_classes=["main-container"]):
|
826 |
+
gr.HTML("""
|
827 |
+
<div class="header-section">
|
828 |
+
<h1 style="margin: 0; font-size: 2.5em; font-weight: 700;">
|
829 |
+
π₯ Optimized Gaza First Aid Assistant
|
830 |
+
</h1>
|
831 |
+
<h2 style="margin: 10px 0 0 0; font-size: 1.2em; font-weight: 400; opacity: 0.9;">
|
832 |
+
Powered by Pre-computed FAISS Index & 768-dim Embeddings
|
833 |
+
</h2>
|
834 |
+
<p style="margin: 15px 0 0 0; font-size: 1em; opacity: 0.8;">
|
835 |
+
Lightning-fast medical guidance using pre-processed knowledge base
|
836 |
+
</p>
|
837 |
+
</div>
|
838 |
+
""")
|
839 |
+
|
840 |
+
# System Stats
|
841 |
+
with gr.Row(elem_classes=["main-container"]):
|
842 |
+
with gr.Group(elem_classes=["stats-container"]):
|
843 |
+
stats_display = gr.Markdown(
|
844 |
+
value=get_system_stats(),
|
845 |
+
label="π System Status"
|
846 |
+
)
|
847 |
+
|
848 |
+
# Main Interface
|
849 |
+
with gr.Row(elem_classes=["main-container"]):
|
850 |
+
with gr.Column(scale=2):
|
851 |
+
# Query Input Section
|
852 |
+
with gr.Group(elem_classes=["query-container"]):
|
853 |
+
gr.Markdown("### π©Ί Medical Query Input")
|
854 |
+
query_input = gr.Textbox(
|
855 |
+
label="Describe your medical situation",
|
856 |
+
placeholder="Enter your first aid question or describe the medical emergency...",
|
857 |
+
lines=4
|
858 |
+
)
|
859 |
+
|
860 |
+
with gr.Row():
|
861 |
+
submit_btn = gr.Button(
|
862 |
+
"π Get Medical Guidance",
|
863 |
+
variant="primary",
|
864 |
+
elem_classes=["submit-btn"],
|
865 |
+
scale=3
|
866 |
+
)
|
867 |
+
clear_btn = gr.Button(
|
868 |
+
"ποΈ Clear",
|
869 |
+
variant="secondary",
|
870 |
+
scale=1
|
871 |
+
)
|
872 |
+
|
873 |
+
with gr.Column(scale=1):
|
874 |
+
# Quick Access
|
875 |
+
gr.Markdown("""
|
876 |
+
### β‘ Optimized Features
|
877 |
+
|
878 |
+
**π Performance:**
|
879 |
+
- Pre-computed FAISS index
|
880 |
+
- 768-dimensional embeddings
|
881 |
+
- Lightning-fast search
|
882 |
+
- Optimized for Gaza context
|
883 |
+
|
884 |
+
**π Knowledge Base:**
|
885 |
+
- WHO medical protocols
|
886 |
+
- ICRC war surgery guides
|
887 |
+
- MSF field manuals
|
888 |
+
- Gaza-specific adaptations
|
889 |
+
|
890 |
+
**π‘οΈ Safety Features:**
|
891 |
+
- Real-time fact checking
|
892 |
+
- Contraindication detection
|
893 |
+
- Gaza resource warnings
|
894 |
+
- Professional disclaimers
|
895 |
+
""")
|
896 |
+
|
897 |
+
# Response Section
|
898 |
+
with gr.Row(elem_classes=["main-container"]):
|
899 |
+
with gr.Column():
|
900 |
+
# Main Response
|
901 |
+
with gr.Group(elem_classes=["response-container"]):
|
902 |
+
gr.Markdown("### π©Ή Medical Guidance Response")
|
903 |
+
response_output = gr.Textbox(
|
904 |
+
label="AI Medical Guidance",
|
905 |
+
lines=15,
|
906 |
+
interactive=False,
|
907 |
+
placeholder="Your medical guidance will appear here..."
|
908 |
+
)
|
909 |
+
|
910 |
+
# Metadata and Status
|
911 |
+
with gr.Row():
|
912 |
+
with gr.Column(scale=1):
|
913 |
+
metadata_output = gr.Textbox(
|
914 |
+
label="π Response Metadata",
|
915 |
+
lines=2,
|
916 |
+
interactive=False,
|
917 |
+
placeholder="Response metadata will appear here..."
|
918 |
+
)
|
919 |
+
|
920 |
+
with gr.Column(scale=1):
|
921 |
+
status_output = gr.Textbox(
|
922 |
+
label="π‘οΈ Safety Status",
|
923 |
+
lines=2,
|
924 |
+
interactive=False,
|
925 |
+
placeholder="Safety validation status will appear here..."
|
926 |
+
)
|
927 |
+
|
928 |
+
# Examples Section
|
929 |
+
with gr.Row(elem_classes=["main-container"]):
|
930 |
+
gr.Markdown("### π‘ Example Medical Scenarios")
|
931 |
+
|
932 |
+
example_queries = [
|
933 |
+
"How to treat severe burns when clean water is extremely limited?",
|
934 |
+
"Managing gunshot wounds with only basic household supplies",
|
935 |
+
"Recognizing and treating infection in wounds without antibiotics",
|
936 |
+
"Emergency care for children during extended power outages",
|
937 |
+
"Treating compound fractures without proper medical equipment"
|
938 |
+
]
|
939 |
+
|
940 |
+
gr.Examples(
|
941 |
+
examples=example_queries,
|
942 |
+
inputs=query_input,
|
943 |
+
label="Click any example to try it:",
|
944 |
+
examples_per_page=5
|
945 |
+
)
|
946 |
+
|
947 |
+
# Event Handlers
|
948 |
+
submit_btn.click(
|
949 |
+
process_medical_query_with_progress,
|
950 |
+
inputs=query_input,
|
951 |
+
outputs=[response_output, metadata_output, status_output],
|
952 |
+
show_progress=True
|
953 |
+
)
|
954 |
+
|
955 |
+
query_input.submit(
|
956 |
+
process_medical_query_with_progress,
|
957 |
+
inputs=query_input,
|
958 |
+
outputs=[response_output, metadata_output, status_output],
|
959 |
+
show_progress=True
|
960 |
+
)
|
961 |
+
|
962 |
+
clear_btn.click(
|
963 |
+
lambda: ("", "", "", ""),
|
964 |
+
outputs=[query_input, response_output, metadata_output, status_output]
|
965 |
+
)
|
966 |
+
|
967 |
+
# Refresh stats button
|
968 |
+
refresh_stats_btn = gr.Button("π Refresh System Stats", variant="secondary")
|
969 |
+
refresh_stats_btn.click(
|
970 |
+
lambda: get_system_stats(),
|
971 |
+
outputs=stats_display
|
972 |
+
)
|
973 |
+
|
974 |
+
return interface
|
975 |
+
|
976 |
+
def main():
|
977 |
+
"""Enhanced main function with optimized system initialization"""
|
978 |
+
logger.info("π Starting Optimized Gaza First Aid Assistant")
|
979 |
+
|
980 |
+
try:
|
981 |
+
# Check for vector store directory
|
982 |
+
vector_store_dir = "./vector_store"
|
983 |
+
if not Path(vector_store_dir).exists():
|
984 |
+
# Try alternative paths
|
985 |
+
alt_paths = ["./results/vector_store", "./results/vector_store_extracted"]
|
986 |
+
for alt_path in alt_paths:
|
987 |
+
if Path(alt_path).exists():
|
988 |
+
vector_store_dir = alt_path
|
989 |
+
logger.info(f"π Found vector store at: {vector_store_dir}")
|
990 |
+
break
|
991 |
+
else:
|
992 |
+
raise FileNotFoundError("Vector store directory not found. Please ensure pre-made assets are available.")
|
993 |
+
|
994 |
+
# System initialization with detailed logging
|
995 |
+
logger.info(f"π§ Loading optimized system from: {vector_store_dir}")
|
996 |
+
system = initialize_optimized_system(vector_store_dir)
|
997 |
+
|
998 |
+
# Verify system components
|
999 |
+
stats = system.knowledge_base.get_stats()
|
1000 |
+
logger.info(f"β
Knowledge base loaded: {stats['total_chunks']} chunks, {stats['embedding_dimension']}D")
|
1001 |
+
logger.info(f"β
Sources: {len(stats['sources'])} documents")
|
1002 |
+
logger.info("β
Medical fact checker ready")
|
1003 |
+
logger.info("β
Optimized FAISS indexing active")
|
1004 |
+
|
1005 |
+
# Create and launch optimized interface
|
1006 |
+
logger.info("π¨ Creating optimized Gradio interface...")
|
1007 |
+
interface = create_optimized_gradio_interface()
|
1008 |
+
|
1009 |
+
logger.info("π Launching optimized interface...")
|
1010 |
+
interface.launch(
|
1011 |
+
server_name="0.0.0.0",
|
1012 |
+
server_port=7860,
|
1013 |
+
share=False,
|
1014 |
+
max_threads=6,
|
1015 |
+
show_error=True,
|
1016 |
+
quiet=False
|
1017 |
+
)
|
1018 |
+
|
1019 |
+
except Exception as e:
|
1020 |
+
logger.error(f"β Failed to start Optimized Gaza First Aid Assistant: {e}")
|
1021 |
+
print(f"\nπ¨ STARTUP ERROR: {e}")
|
1022 |
+
print("\nπ§ Troubleshooting Steps:")
|
1023 |
+
print("1. Ensure vector_store directory exists with index.faiss, chunks.txt, and metadata.pkl")
|
1024 |
+
print("2. Check if all dependencies are installed: pip install -r requirements.txt")
|
1025 |
+
print("3. Verify sufficient memory is available (minimum 4GB RAM recommended)")
|
1026 |
+
print("4. Check system logs for detailed error information")
|
1027 |
+
print("\nπ For technical support, check the application logs above.")
|
1028 |
+
sys.exit(1)
|
1029 |
+
|
1030 |
+
if __name__ == "__main__":
|
1031 |
+
main()
|
1032 |
+
|