riu-rd's picture
Update app.py
fbee882 verified
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import pandas as pd
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def get_stock_signal(symbol: str, interval: str) -> str:
"""Retrieves intraday stock data for the given symbol using the Alpha Vantage API, computes exponential moving averages (EMA), and generates a trading signal based on an EMA crossover strategy.
Args:
symbol: A string representing the stock symbol to analyze (e.g., "AAPL", "GOOG", "MSFT", "TSLA").
interval: A string representing the time interval between data points (e.g., "1min", "5min", "15min", "60min").
"""
API_KEY = 'RG9XKRIYBL2EV3V3'
url = (
f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY'
f'&symbol={symbol}&interval={interval}&outputsize=full&apikey={API_KEY}'
)
response = requests.get(url)
data = response.json()
time_series_key = f"Time Series ({interval})"
time_series = data.get(time_series_key, {})
if not time_series:
raise ValueError("Failed to retrieve data. Check your API key, symbol, and interval.")
# Create a DataFrame from the time series data
df = pd.DataFrame.from_dict(time_series, orient='index')
df = df.rename(columns={
'1. open': 'open',
'2. high': 'high',
'3. low': 'low',
'4. close': 'close',
'5. volume': 'volume'
})
df.index = pd.to_datetime(df.index)
df = df.sort_index()
df['close'] = pd.to_numeric(df['close'])
# Ensure there is enough data to calculate the EMAs
if len(df) < 26:
return f"Insufficient data to calculate the required EMAs for {symbol} at a {interval} interval."
# Improved Strategy: Using Exponential Moving Averages (EMA) for a more responsive indicator.
# Short-term EMA (e.g., 12 periods) and Long-term EMA (e.g., 26 periods)
df['EMA_short'] = df['close'].ewm(span=12, adjust=False).mean()
df['EMA_long'] = df['close'].ewm(span=26, adjust=False).mean()
# Get the latest two data points to check for a crossover
latest = df.iloc[-1]
prev = df.iloc[-2]
# Determine buy/sell signal based on EMA crossover
signal = "Hold"
if prev['EMA_short'] < prev['EMA_long'] and latest['EMA_short'] > latest['EMA_long']:
signal = "Buy"
elif prev['EMA_short'] > prev['EMA_long'] and latest['EMA_short'] < latest['EMA_long']:
signal = "Sell"
# Return a complete sentence with the decision
decision = (f"The latest closing price for {symbol.upper()} at a {interval} interval is "
f"${latest['close']:.2f}, and the recommended action is to {signal}.")
return decision
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
search_tool = DuckDuckGoSearchTool()
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_stock_signal, image_generation_tool, get_current_time_in_timezone], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()