File size: 4,675 Bytes
9b5b26a
 
 
 
c19d193
6aae614
72162a4
8fe992b
9b5b26a
 
5df72d6
9b5b26a
c3f8a7e
0eb4b7f
9b5b26a
39c9aa2
 
9b5b26a
72162a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
6cdac6c
 
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
2d8595b
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
fbee882
8c01ffb
 
 
 
 
 
861422e
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import pandas as pd

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def get_stock_signal(symbol: str, interval: str) -> str:
    """Retrieves intraday stock data for the given symbol using the Alpha Vantage API, computes exponential moving averages (EMA), and generates a trading signal based on an EMA crossover strategy.
    Args:
        symbol: A string representing the stock symbol to analyze (e.g., "AAPL", "GOOG", "MSFT", "TSLA").
        interval: A string representing the time interval between data points (e.g., "1min", "5min", "15min", "60min").
    """
    API_KEY = 'RG9XKRIYBL2EV3V3'
    
    url = (
        f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY'
        f'&symbol={symbol}&interval={interval}&outputsize=full&apikey={API_KEY}'
    )
    
    response = requests.get(url)
    data = response.json()
    
    time_series_key = f"Time Series ({interval})"
    time_series = data.get(time_series_key, {})
    if not time_series:
        raise ValueError("Failed to retrieve data. Check your API key, symbol, and interval.")
    
    # Create a DataFrame from the time series data
    df = pd.DataFrame.from_dict(time_series, orient='index')
    df = df.rename(columns={
        '1. open': 'open',
        '2. high': 'high',
        '3. low': 'low',
        '4. close': 'close',
        '5. volume': 'volume'
    })
    df.index = pd.to_datetime(df.index)
    df = df.sort_index()
    df['close'] = pd.to_numeric(df['close'])
    
    # Ensure there is enough data to calculate the EMAs
    if len(df) < 26:
        return f"Insufficient data to calculate the required EMAs for {symbol} at a {interval} interval."
    
    # Improved Strategy: Using Exponential Moving Averages (EMA) for a more responsive indicator.
    # Short-term EMA (e.g., 12 periods) and Long-term EMA (e.g., 26 periods)
    df['EMA_short'] = df['close'].ewm(span=12, adjust=False).mean()
    df['EMA_long'] = df['close'].ewm(span=26, adjust=False).mean()
    
    # Get the latest two data points to check for a crossover
    latest = df.iloc[-1]
    prev = df.iloc[-2]
    
    # Determine buy/sell signal based on EMA crossover
    signal = "Hold"
    if prev['EMA_short'] < prev['EMA_long'] and latest['EMA_short'] > latest['EMA_long']:
        signal = "Buy"
    elif prev['EMA_short'] > prev['EMA_long'] and latest['EMA_short'] < latest['EMA_long']:
        signal = "Sell"
    
    # Return a complete sentence with the decision
    decision = (f"The latest closing price for {symbol.upper()} at a {interval} interval is "
                f"${latest['close']:.2f}, and the recommended action is to {signal}.")
    return decision

@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
search_tool = DuckDuckGoSearchTool()

with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer, get_stock_signal, image_generation_tool, get_current_time_in_timezone], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates
)


GradioUI(agent).launch()