Spaces:
Sleeping
Sleeping
File size: 4,675 Bytes
9b5b26a c19d193 6aae614 72162a4 8fe992b 9b5b26a 5df72d6 9b5b26a c3f8a7e 0eb4b7f 9b5b26a 39c9aa2 9b5b26a 72162a4 9b5b26a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 6cdac6c fe328e0 13d500a 8c01ffb 9b5b26a 2d8595b 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b fbee882 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import pandas as pd
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def get_stock_signal(symbol: str, interval: str) -> str:
"""Retrieves intraday stock data for the given symbol using the Alpha Vantage API, computes exponential moving averages (EMA), and generates a trading signal based on an EMA crossover strategy.
Args:
symbol: A string representing the stock symbol to analyze (e.g., "AAPL", "GOOG", "MSFT", "TSLA").
interval: A string representing the time interval between data points (e.g., "1min", "5min", "15min", "60min").
"""
API_KEY = 'RG9XKRIYBL2EV3V3'
url = (
f'https://www.alphavantage.co/query?function=TIME_SERIES_INTRADAY'
f'&symbol={symbol}&interval={interval}&outputsize=full&apikey={API_KEY}'
)
response = requests.get(url)
data = response.json()
time_series_key = f"Time Series ({interval})"
time_series = data.get(time_series_key, {})
if not time_series:
raise ValueError("Failed to retrieve data. Check your API key, symbol, and interval.")
# Create a DataFrame from the time series data
df = pd.DataFrame.from_dict(time_series, orient='index')
df = df.rename(columns={
'1. open': 'open',
'2. high': 'high',
'3. low': 'low',
'4. close': 'close',
'5. volume': 'volume'
})
df.index = pd.to_datetime(df.index)
df = df.sort_index()
df['close'] = pd.to_numeric(df['close'])
# Ensure there is enough data to calculate the EMAs
if len(df) < 26:
return f"Insufficient data to calculate the required EMAs for {symbol} at a {interval} interval."
# Improved Strategy: Using Exponential Moving Averages (EMA) for a more responsive indicator.
# Short-term EMA (e.g., 12 periods) and Long-term EMA (e.g., 26 periods)
df['EMA_short'] = df['close'].ewm(span=12, adjust=False).mean()
df['EMA_long'] = df['close'].ewm(span=26, adjust=False).mean()
# Get the latest two data points to check for a crossover
latest = df.iloc[-1]
prev = df.iloc[-2]
# Determine buy/sell signal based on EMA crossover
signal = "Hold"
if prev['EMA_short'] < prev['EMA_long'] and latest['EMA_short'] > latest['EMA_long']:
signal = "Buy"
elif prev['EMA_short'] > prev['EMA_long'] and latest['EMA_short'] < latest['EMA_long']:
signal = "Sell"
# Return a complete sentence with the decision
decision = (f"The latest closing price for {symbol.upper()} at a {interval} interval is "
f"${latest['close']:.2f}, and the recommended action is to {signal}.")
return decision
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
# model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
search_tool = DuckDuckGoSearchTool()
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_stock_signal, image_generation_tool, get_current_time_in_timezone], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |