Spaces:
Sleeping
Sleeping
import base64 | |
import streamlit as st | |
from streamlit_chat import message | |
from streamlit_extras.colored_header import colored_header | |
from backend import QnASystem | |
from schema import TransformType, EmbeddingTypes, IndexerType, BotType | |
kwargs = {} | |
source_docs = [] | |
st.set_page_config(page_title="PDFChat - An LLM-powered experimentation app") | |
if "qna_system" not in st.session_state: | |
st.session_state.qna_system = QnASystem() | |
def show_pdf(f): | |
f.seek(0) | |
base64_pdf = base64.b64encode(f.read()).decode('utf-8') | |
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="800" ' \ | |
f'type="application/pdf"></iframe>' | |
st.markdown(pdf_display, unsafe_allow_html=True) | |
def model_settings(): | |
kwargs["temperature"] = st.slider("Temperature", max_value=1.0, min_value=0.0) | |
kwargs["max_tokens"] = st.number_input("Max Token", min_value=0, value=512) | |
st.title("PDF Question and Answering") | |
tab1, tab2, tab3 = st.tabs(["Upload and Ingest PDF", "Ask", "Show PDF"]) | |
with st.sidebar: | |
st.header("Advance Setting βοΈ") | |
require_pdf = st.checkbox("Show PDF", value=1) | |
st.markdown('---') | |
kwargs["bot_type"] = st.selectbox("Bot Type", options=BotType) | |
st.markdown("---") | |
st.text("Model Parameters") | |
kwargs["return_documents"] = st.checkbox("Require Source Documents", value=True) | |
text_transform = st.selectbox("Text Transformer", options=TransformType) | |
st.markdown("---") | |
selected_model = st.selectbox("Select Model", options=EmbeddingTypes) | |
match selected_model: | |
case EmbeddingTypes.OPENAI: | |
api_key = st.text_input("OpenAI API Key", placeholder="sk-...", type="password") | |
if not api_key.startswith('sk-'): | |
st.warning('Please enter your OpenAI API key!', icon='β ') | |
model_settings() | |
case EmbeddingTypes.HUGGING_FACE: | |
api_key = st.text_input("Hugging Face API Key", placeholder="hg-...", type="password") | |
if not api_key.startswith('hg-'): | |
st.warning('Please enter your HuggingFace API key!', icon='β ') | |
huggingface_model = st.selectbox("Choose Model", options=["google/flan-t5-xl"]) | |
model_settings() | |
case EmbeddingTypes.COHERE: | |
api_key = st.text_input("Cohere API Key", placeholder="...", type="password") | |
if not api_key: | |
st.warning('Please enter your Cohere API key!', icon='β ') | |
model_settings() | |
case _: | |
api_key = None | |
kwargs["api_key"] = api_key | |
st.markdown("---") | |
vector_indexer = st.selectbox("Vector Indexer", options=IndexerType) | |
match vector_indexer: | |
case IndexerType.ELASTICSEARCH: | |
kwargs["elasticsearch_url"] = st.text_input("Elastic Search URL: ") | |
if not kwargs.get("elasticsearch_url"): | |
st.warning("Please enter your elastic search url", icon='β ') | |
kwargs["elasticsearch_index"] = st.text_input("Elastic Search Index: ") | |
if not kwargs.get("elasticsearch_index"): | |
st.warning("Please enter your elastic search index", icon='β ') | |
st.markdown("---") | |
st.text("Chain Settings") | |
kwargs["chain_type"] = st.selectbox("Chain Type", options=["stuff", "map_reduce"]) | |
kwargs["search_type"] = st.selectbox("Search Type", options=["similarity"]) | |
st.markdown("---") | |
with tab1: | |
uploaded_file = st.file_uploader("Upload and Ingest PDF π", type="pdf") | |
if uploaded_file: | |
with st.spinner("Uploading and Ingesting"): | |
documents = st.session_state.qna_system.read_and_load_pdf(uploaded_file) | |
if selected_model == EmbeddingTypes.NA: | |
st.warning("Please select the model", icon='β ') | |
else: | |
st.session_state.qna_system.build_chain(transform_type=text_transform, embedding_type=selected_model, | |
indexer_type=vector_indexer, **kwargs) | |
def generate_response(prompt): | |
if prompt and uploaded_file: | |
response = st.session_state.qna_system.ask_question(prompt) | |
return response.get("answer", response.get("result", "")), response.get("source_documents") | |
return "", [] | |
with tab2: | |
if not uploaded_file: | |
st.warning("Please upload PDF", icon='β ') | |
else: | |
match kwargs["bot_type"]: | |
case BotType.qna: | |
with st.container(): | |
with st.form('my_form'): | |
text = st.text_area("", placeholder='Ask me...') | |
submitted = st.form_submit_button('Submit') | |
if text: | |
st.write(f"Question:\n{text}") | |
response, source_docs = generate_response(text) | |
st.write(response) | |
case BotType.conversational: | |
# Generate empty lists for generated and past. | |
## generated stores AI generated responses | |
if 'generated' not in st.session_state: | |
st.session_state['generated'] = ["Hi! I'm PDF Assistant π€, How may I help you?"] | |
## past stores User's questions | |
if 'past' not in st.session_state: | |
st.session_state['past'] = ['Hi!'] | |
input_container = st.container() | |
colored_header(label='', description='', color_name='blue-30') | |
response_container = st.container() | |
response = "" | |
def get_text(): | |
input_text = st.text_input("You: ", "", key="input") | |
return input_text | |
with input_container: | |
user_input = get_text() | |
if st.button("Clear"): | |
st.session_state.generated.clear() | |
st.session_state.past.clear() | |
with response_container: | |
if user_input: | |
response, source_docs = generate_response(user_input) | |
st.session_state.past.append(user_input) | |
st.session_state.generated.append(response) | |
if st.session_state['generated']: | |
for i in range(len(st.session_state['generated'])): | |
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user') | |
message(st.session_state["generated"][i], key=str(i)) | |
require_document = st.container() | |
if kwargs["return_documents"]: | |
with require_document: | |
with st.expander("Related Documents", expanded=False): | |
for source in source_docs: | |
metadata = source.metadata | |
st.write("{source} - {page_no}".format(source=metadata.get("source"), | |
page_no=metadata.get("page_no"))) | |
st.write(source.page_content) | |
st.markdown("---") | |
with tab3: | |
if require_pdf and uploaded_file: | |
show_pdf(uploaded_file) | |
elif uploaded_file: | |
st.warning("Feature not enabled.", icon='β ') | |
else: | |
st.warning("Please upload PDF", icon='β ') |