File size: 7,340 Bytes
9ccb3aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a49679
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import base64

import streamlit as st
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header

from backend import QnASystem
from schema import TransformType, EmbeddingTypes, IndexerType, BotType

kwargs = {}
source_docs = []
st.set_page_config(page_title="PDFChat - An LLM-powered experimentation app")

if "qna_system" not in st.session_state:
    st.session_state.qna_system = QnASystem()


def show_pdf(f):
    f.seek(0)
    base64_pdf = base64.b64encode(f.read()).decode('utf-8')
    pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="700" height="800" ' \
                  f'type="application/pdf"></iframe>'
    st.markdown(pdf_display, unsafe_allow_html=True)


def model_settings():
    kwargs["temperature"] = st.slider("Temperature", max_value=1.0, min_value=0.0)
    kwargs["max_tokens"] = st.number_input("Max Token", min_value=0, value=512)


st.title("PDF Question and Answering")

tab1, tab2, tab3 = st.tabs(["Upload and Ingest PDF", "Ask", "Show PDF"])

with st.sidebar:
    st.header("Advance Setting βš™οΈ")
    require_pdf = st.checkbox("Show PDF", value=1)
    st.markdown('---')
    kwargs["bot_type"] = st.selectbox("Bot Type", options=BotType)
    st.markdown("---")
    st.text("Model Parameters")
    kwargs["return_documents"] = st.checkbox("Require Source Documents", value=True)
    text_transform = st.selectbox("Text Transformer", options=TransformType)
    st.markdown("---")
    selected_model = st.selectbox("Select Model", options=EmbeddingTypes)
    match selected_model:
        case EmbeddingTypes.OPENAI:
            api_key = st.text_input("OpenAI API Key", placeholder="sk-...", type="password")
            if not api_key.startswith('sk-'):
                st.warning('Please enter your OpenAI API key!', icon='⚠')
            model_settings()
        case EmbeddingTypes.HUGGING_FACE:
            api_key = st.text_input("Hugging Face API Key", placeholder="hg-...", type="password")
            if not api_key.startswith('hg-'):
                st.warning('Please enter your HuggingFace API key!', icon='⚠')
            huggingface_model = st.selectbox("Choose Model", options=["google/flan-t5-xl"])
            model_settings()
        case EmbeddingTypes.COHERE:
            api_key = st.text_input("Cohere API Key", placeholder="...", type="password")
            if not api_key:
                st.warning('Please enter your Cohere API key!', icon='⚠')
            model_settings()
        case _:
            api_key = None
    kwargs["api_key"] = api_key
    st.markdown("---")

    vector_indexer = st.selectbox("Vector Indexer", options=IndexerType)
    match vector_indexer:
        case IndexerType.ELASTICSEARCH:
            kwargs["elasticsearch_url"] = st.text_input("Elastic Search URL: ")
            if not kwargs.get("elasticsearch_url"):
                st.warning("Please enter your elastic search url", icon='⚠')
            kwargs["elasticsearch_index"] = st.text_input("Elastic Search Index: ")
            if not kwargs.get("elasticsearch_index"):
                st.warning("Please enter your elastic search index", icon='⚠')

    st.markdown("---")
    st.text("Chain Settings")
    kwargs["chain_type"] = st.selectbox("Chain Type", options=["stuff", "map_reduce"])
    kwargs["search_type"] = st.selectbox("Search Type", options=["similarity"])
    st.markdown("---")

with tab1:
    uploaded_file = st.file_uploader("Upload and Ingest PDF πŸš€", type="pdf")
    if uploaded_file:
        with st.spinner("Uploading and Ingesting"):
            documents = st.session_state.qna_system.read_and_load_pdf(uploaded_file)
            if selected_model == EmbeddingTypes.NA:
                st.warning("Please select the model", icon='⚠')
            else:
                st.session_state.qna_system.build_chain(transform_type=text_transform, embedding_type=selected_model,
                                                        indexer_type=vector_indexer, **kwargs)


def generate_response(prompt):
    if prompt and uploaded_file:
        response = st.session_state.qna_system.ask_question(prompt)
        return response.get("answer", response.get("result", "")), response.get("source_documents")
    return "", []


with tab2:
    if not uploaded_file:
        st.warning("Please upload PDF", icon='⚠')
    else:
        match kwargs["bot_type"]:
            case BotType.qna:
                with st.container():
                    with st.form('my_form'):
                        text = st.text_area("", placeholder='Ask me...')
                        submitted = st.form_submit_button('Submit')
                        if text:
                            st.write(f"Question:\n{text}")
                            response, source_docs = generate_response(text)
                            st.write(response)
            case BotType.conversational:
                # Generate empty lists for generated and past.
                ## generated stores AI generated responses
                if 'generated' not in st.session_state:
                    st.session_state['generated'] = ["Hi! I'm PDF Assistant πŸ€–, How may I help you?"]
                ## past stores User's questions
                if 'past' not in st.session_state:
                    st.session_state['past'] = ['Hi!']

                input_container = st.container()
                colored_header(label='', description='', color_name='blue-30')
                response_container = st.container()
                response = ""


                def get_text():
                    input_text = st.text_input("You: ", "", key="input")
                    return input_text


                with input_container:
                    user_input = get_text()
                    if st.button("Clear"):
                        st.session_state.generated.clear()
                        st.session_state.past.clear()

                with response_container:
                    if user_input:
                        response, source_docs = generate_response(user_input)
                        st.session_state.past.append(user_input)
                        st.session_state.generated.append(response)

                    if st.session_state['generated']:
                        for i in range(len(st.session_state['generated'])):
                            message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
                            message(st.session_state["generated"][i], key=str(i))

        require_document = st.container()
        if kwargs["return_documents"]:
            with require_document:
                with st.expander("Related Documents", expanded=False):
                    for source in source_docs:
                        metadata = source.metadata
                        st.write("{source} - {page_no}".format(source=metadata.get("source"),
                                                               page_no=metadata.get("page_no")))
                        st.write(source.page_content)
                        st.markdown("---")

with tab3:
    if require_pdf and uploaded_file:
        show_pdf(uploaded_file)
    elif uploaded_file:
        st.warning("Feature not enabled.", icon='⚠')
    else:
        st.warning("Please upload PDF", icon='⚠')