training_bench / train.py
rider-provider-777's picture
Upload 7 files
cd221f8 verified
raw
history blame
8.27 kB
import argparse, json, math, os, time
from dataclasses import dataclass
from typing import Optional
import torch
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM
from models.research_model import ResearchTransformer, ModelConfig
def save_checkpoint(acc: Accelerator, model, optimizer, ckpt_path: str, epoch: int, step: int, extra: dict):
if acc.is_main_process:
os.makedirs(os.path.dirname(ckpt_path), exist_ok=True)
state = {
"model": acc.get_state_dict(model),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"step": step,
"extra": extra,
}
torch.save(state, ckpt_path)
def load_checkpoint(model, optimizer, ckpt_path: str):
ckpt = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt["model"], strict=False)
optimizer.load_state_dict(ckpt["optimizer"])
return ckpt.get("epoch", 0), ckpt.get("step", 0), ckpt.get("extra", {})
def build_tokenizer(name: str):
tok = AutoTokenizer.from_pretrained(name)
if tok.pad_token is None:
tok.pad_token = tok.eos_token
return tok
def collate_batch(examples, tokenizer, block_size: int):
texts = [ex.get("text") or next((v for v in ex.values() if isinstance(v, str)), "") for ex in examples]
toks = tokenizer(texts, padding="max_length", truncation=True, max_length=block_size, return_tensors="pt")
input_ids = toks["input_ids"]
labels = input_ids.clone()
return {"input_ids": input_ids, "labels": labels, "attention_mask": toks["attention_mask"]}
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--config", type=str, required=True)
ap.add_argument("--resume", action="store_true")
args = ap.parse_args()
with open(args.config, "r") as f:
cfg = json.load(f)
acc = Accelerator()
acc.print("Accelerator initialized.")
model_arch = cfg.get("model_architecture", "ResearchTransformer (Experimental)")
dataset_name = cfg.get("dataset_name", "stas/tiny-stories")
tokenizer_name = cfg.get("tokenizer_name", "gpt2")
block_size = int(cfg.get("block_size", 256))
batch_size = int(cfg.get("batch_size", 8))
max_batches_per_epoch = int(cfg.get("max_batches_per_epoch", 0)) or None
params = cfg.get("params", {})
epochs = int(params.get("epochs", 1))
lr = float(params.get("learning_rate", 5e-5))
wd = float(params.get("weight_decay", 0.01))
accum_steps = int(cfg.get("accum_steps", 1))
results_file = cfg.get("results_file", "results.json")
ckpt_path = cfg.get("checkpoint_path", os.path.join(os.path.dirname(results_file) or ".", "checkpoint.pt"))
sample_every = int(cfg.get("sample_every_steps", 200))
tokenizer = build_tokenizer(tokenizer_name)
vocab_size = int(cfg.get("vocab_size", getattr(tokenizer, 'vocab_size', 65536) or 65536))
if model_arch == "Official Gemma (Baseline)":
model = AutoModelForCausalLM.from_pretrained(tokenizer_name)
else:
mc = ModelConfig(
vocab_size=vocab_size,
n_layer=int(cfg.get("n_layer", 6)),
n_head=int(cfg.get("n_head", 8)),
n_embd=int(cfg.get("n_embd", 512)),
block_size=block_size,
dropout=float(cfg.get("dropout", 0.1)),
)
model = ResearchTransformer(mc)
from datasets import load_dataset
raw = load_dataset(dataset_name)
if "train" not in raw:
raw = {"train": raw}
ds = raw["train"]
split = ds.train_test_split(test_size=0.05, seed=42) if hasattr(ds, "train_test_split") else {"train": ds, "test": ds}
train_ds, val_ds = split["train"], split["test"]
from torch.utils.data import DataLoader
def collate(examples):
return collate_batch(examples, tokenizer, block_size)
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, collate_fn=collate)
val_loader = DataLoader(val_ds, batch_size=batch_size, shuffle=False, collate_fn=collate)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=wd)
model, optimizer, train_loader, val_loader = acc.prepare(model, optimizer, train_loader, val_loader)
start_epoch = 0
global_step = 0
if args.resume and os.path.exists(ckpt_path):
start_epoch, global_step, _ = load_checkpoint(model, optimizer, ckpt_path)
acc.print(f"Resumed from checkpoint at epoch {start_epoch}, step {global_step}")
os.makedirs(os.path.dirname(results_file) or ".", exist_ok=True)
results = {"config": cfg, "status": "running", "history": [], "samples": []}
def evaluate():
model.eval()
losses = []
with torch.no_grad():
for i, batch in enumerate(val_loader):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
losses.append(acc.gather_for_metrics(out.loss.detach().repeat(batch["input_ids"].size(0))))
if max_batches_per_epoch and i + 1 >= max_batches_per_epoch:
break
loss = torch.cat(losses).mean().item()
ppl = math.exp(min(20.0, loss))
return loss, ppl
def sample_text(prompt: str = "Once upon a time"):
model.eval()
with torch.no_grad():
ids = tokenizer(prompt, return_tensors="pt").input_ids.to(acc.device)
gen = model.generate(ids, max_new_tokens=64)
text = tokenizer.decode(gen[0], skip_special_tokens=True)
return text
best_val = float("inf")
patience, bad_epochs = 3, 0
start_time = time.time()
for epoch in range(start_epoch, epochs):
model.train()
epoch_start = time.time()
optimizer.zero_grad()
running_loss = 0.0
for i, batch in enumerate(train_loader):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
loss = out.loss / accum_steps
acc.backward(loss)
if (i + 1) % accum_steps == 0:
optimizer.step()
optimizer.zero_grad()
running_loss += out.loss.detach().item()
global_step += 1
if sample_every and global_step % sample_every == 0 and acc.is_main_process:
results["samples"].append({"step": global_step, "text": sample_text()})
if max_batches_per_epoch and i + 1 >= max_batches_per_epoch:
break
if (i + 1) % accum_steps != 0:
optimizer.step()
optimizer.zero_grad()
train_time = time.time() - epoch_start
val_loss, val_ppl = evaluate()
try:
mem = torch.cuda.max_memory_allocated() / (1024 ** 3)
except Exception:
mem = None
results["history"].append({
"epoch": epoch + 1,
"train_time_sec": train_time,
"val_loss": val_loss,
"val_ppl": val_ppl,
"max_cuda_mem_gb": mem,
"effective_batch_size": batch_size * accum_steps,
})
improve = val_loss < best_val - 1e-5
if improve:
best_val = val_loss
bad_epochs = 0
save_checkpoint(acc, model, optimizer, ckpt_path, epoch + 1, global_step, {"best_val": best_val})
else:
bad_epochs += 1
if bad_epochs >= patience:
acc.print("Early stopping triggered.")
break
if acc.is_main_process:
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
total = time.time() - start_time
results["status"] = "completed"
results["total_training_time_sec"] = total
results["final_validation"] = {"loss": best_val, "perplexity": math.exp(min(20.0, best_val))}
if acc.is_main_process:
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
acc.print(f"Done in {total/60:.1f} min. Best val {best_val:.4f}")
if __name__ == "__main__":
main()