Spaces:
Sleeping
Sleeping
File size: 8,270 Bytes
cd221f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import argparse, json, math, os, time
from dataclasses import dataclass
from typing import Optional
import torch
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM
from models.research_model import ResearchTransformer, ModelConfig
def save_checkpoint(acc: Accelerator, model, optimizer, ckpt_path: str, epoch: int, step: int, extra: dict):
if acc.is_main_process:
os.makedirs(os.path.dirname(ckpt_path), exist_ok=True)
state = {
"model": acc.get_state_dict(model),
"optimizer": optimizer.state_dict(),
"epoch": epoch,
"step": step,
"extra": extra,
}
torch.save(state, ckpt_path)
def load_checkpoint(model, optimizer, ckpt_path: str):
ckpt = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt["model"], strict=False)
optimizer.load_state_dict(ckpt["optimizer"])
return ckpt.get("epoch", 0), ckpt.get("step", 0), ckpt.get("extra", {})
def build_tokenizer(name: str):
tok = AutoTokenizer.from_pretrained(name)
if tok.pad_token is None:
tok.pad_token = tok.eos_token
return tok
def collate_batch(examples, tokenizer, block_size: int):
texts = [ex.get("text") or next((v for v in ex.values() if isinstance(v, str)), "") for ex in examples]
toks = tokenizer(texts, padding="max_length", truncation=True, max_length=block_size, return_tensors="pt")
input_ids = toks["input_ids"]
labels = input_ids.clone()
return {"input_ids": input_ids, "labels": labels, "attention_mask": toks["attention_mask"]}
def main():
ap = argparse.ArgumentParser()
ap.add_argument("--config", type=str, required=True)
ap.add_argument("--resume", action="store_true")
args = ap.parse_args()
with open(args.config, "r") as f:
cfg = json.load(f)
acc = Accelerator()
acc.print("Accelerator initialized.")
model_arch = cfg.get("model_architecture", "ResearchTransformer (Experimental)")
dataset_name = cfg.get("dataset_name", "stas/tiny-stories")
tokenizer_name = cfg.get("tokenizer_name", "gpt2")
block_size = int(cfg.get("block_size", 256))
batch_size = int(cfg.get("batch_size", 8))
max_batches_per_epoch = int(cfg.get("max_batches_per_epoch", 0)) or None
params = cfg.get("params", {})
epochs = int(params.get("epochs", 1))
lr = float(params.get("learning_rate", 5e-5))
wd = float(params.get("weight_decay", 0.01))
accum_steps = int(cfg.get("accum_steps", 1))
results_file = cfg.get("results_file", "results.json")
ckpt_path = cfg.get("checkpoint_path", os.path.join(os.path.dirname(results_file) or ".", "checkpoint.pt"))
sample_every = int(cfg.get("sample_every_steps", 200))
tokenizer = build_tokenizer(tokenizer_name)
vocab_size = int(cfg.get("vocab_size", getattr(tokenizer, 'vocab_size', 65536) or 65536))
if model_arch == "Official Gemma (Baseline)":
model = AutoModelForCausalLM.from_pretrained(tokenizer_name)
else:
mc = ModelConfig(
vocab_size=vocab_size,
n_layer=int(cfg.get("n_layer", 6)),
n_head=int(cfg.get("n_head", 8)),
n_embd=int(cfg.get("n_embd", 512)),
block_size=block_size,
dropout=float(cfg.get("dropout", 0.1)),
)
model = ResearchTransformer(mc)
from datasets import load_dataset
raw = load_dataset(dataset_name)
if "train" not in raw:
raw = {"train": raw}
ds = raw["train"]
split = ds.train_test_split(test_size=0.05, seed=42) if hasattr(ds, "train_test_split") else {"train": ds, "test": ds}
train_ds, val_ds = split["train"], split["test"]
from torch.utils.data import DataLoader
def collate(examples):
return collate_batch(examples, tokenizer, block_size)
train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, collate_fn=collate)
val_loader = DataLoader(val_ds, batch_size=batch_size, shuffle=False, collate_fn=collate)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=wd)
model, optimizer, train_loader, val_loader = acc.prepare(model, optimizer, train_loader, val_loader)
start_epoch = 0
global_step = 0
if args.resume and os.path.exists(ckpt_path):
start_epoch, global_step, _ = load_checkpoint(model, optimizer, ckpt_path)
acc.print(f"Resumed from checkpoint at epoch {start_epoch}, step {global_step}")
os.makedirs(os.path.dirname(results_file) or ".", exist_ok=True)
results = {"config": cfg, "status": "running", "history": [], "samples": []}
def evaluate():
model.eval()
losses = []
with torch.no_grad():
for i, batch in enumerate(val_loader):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
losses.append(acc.gather_for_metrics(out.loss.detach().repeat(batch["input_ids"].size(0))))
if max_batches_per_epoch and i + 1 >= max_batches_per_epoch:
break
loss = torch.cat(losses).mean().item()
ppl = math.exp(min(20.0, loss))
return loss, ppl
def sample_text(prompt: str = "Once upon a time"):
model.eval()
with torch.no_grad():
ids = tokenizer(prompt, return_tensors="pt").input_ids.to(acc.device)
gen = model.generate(ids, max_new_tokens=64)
text = tokenizer.decode(gen[0], skip_special_tokens=True)
return text
best_val = float("inf")
patience, bad_epochs = 3, 0
start_time = time.time()
for epoch in range(start_epoch, epochs):
model.train()
epoch_start = time.time()
optimizer.zero_grad()
running_loss = 0.0
for i, batch in enumerate(train_loader):
out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
loss = out.loss / accum_steps
acc.backward(loss)
if (i + 1) % accum_steps == 0:
optimizer.step()
optimizer.zero_grad()
running_loss += out.loss.detach().item()
global_step += 1
if sample_every and global_step % sample_every == 0 and acc.is_main_process:
results["samples"].append({"step": global_step, "text": sample_text()})
if max_batches_per_epoch and i + 1 >= max_batches_per_epoch:
break
if (i + 1) % accum_steps != 0:
optimizer.step()
optimizer.zero_grad()
train_time = time.time() - epoch_start
val_loss, val_ppl = evaluate()
try:
mem = torch.cuda.max_memory_allocated() / (1024 ** 3)
except Exception:
mem = None
results["history"].append({
"epoch": epoch + 1,
"train_time_sec": train_time,
"val_loss": val_loss,
"val_ppl": val_ppl,
"max_cuda_mem_gb": mem,
"effective_batch_size": batch_size * accum_steps,
})
improve = val_loss < best_val - 1e-5
if improve:
best_val = val_loss
bad_epochs = 0
save_checkpoint(acc, model, optimizer, ckpt_path, epoch + 1, global_step, {"best_val": best_val})
else:
bad_epochs += 1
if bad_epochs >= patience:
acc.print("Early stopping triggered.")
break
if acc.is_main_process:
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
total = time.time() - start_time
results["status"] = "completed"
results["total_training_time_sec"] = total
results["final_validation"] = {"loss": best_val, "perplexity": math.exp(min(20.0, best_val))}
if acc.is_main_process:
with open(results_file, "w") as f:
json.dump(results, f, indent=2)
acc.print(f"Done in {total/60:.1f} min. Best val {best_val:.4f}")
if __name__ == "__main__":
main()
|