File size: 8,270 Bytes
cd221f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

import argparse, json, math, os, time
from dataclasses import dataclass
from typing import Optional

import torch
from accelerate import Accelerator
from transformers import AutoTokenizer, AutoModelForCausalLM

from models.research_model import ResearchTransformer, ModelConfig

def save_checkpoint(acc: Accelerator, model, optimizer, ckpt_path: str, epoch: int, step: int, extra: dict):
    if acc.is_main_process:
        os.makedirs(os.path.dirname(ckpt_path), exist_ok=True)
    state = {
        "model": acc.get_state_dict(model),
        "optimizer": optimizer.state_dict(),
        "epoch": epoch,
        "step": step,
        "extra": extra,
    }
    torch.save(state, ckpt_path)

def load_checkpoint(model, optimizer, ckpt_path: str):
    ckpt = torch.load(ckpt_path, map_location="cpu")
    model.load_state_dict(ckpt["model"], strict=False)
    optimizer.load_state_dict(ckpt["optimizer"])
    return ckpt.get("epoch", 0), ckpt.get("step", 0), ckpt.get("extra", {})

def build_tokenizer(name: str):
    tok = AutoTokenizer.from_pretrained(name)
    if tok.pad_token is None:
        tok.pad_token = tok.eos_token
    return tok

def collate_batch(examples, tokenizer, block_size: int):
    texts = [ex.get("text") or next((v for v in ex.values() if isinstance(v, str)), "") for ex in examples]
    toks = tokenizer(texts, padding="max_length", truncation=True, max_length=block_size, return_tensors="pt")
    input_ids = toks["input_ids"]
    labels = input_ids.clone()
    return {"input_ids": input_ids, "labels": labels, "attention_mask": toks["attention_mask"]}

def main():
    ap = argparse.ArgumentParser()
    ap.add_argument("--config", type=str, required=True)
    ap.add_argument("--resume", action="store_true")
    args = ap.parse_args()

    with open(args.config, "r") as f:
        cfg = json.load(f)

    acc = Accelerator()
    acc.print("Accelerator initialized.")

    model_arch = cfg.get("model_architecture", "ResearchTransformer (Experimental)")
    dataset_name = cfg.get("dataset_name", "stas/tiny-stories")
    tokenizer_name = cfg.get("tokenizer_name", "gpt2")
    block_size = int(cfg.get("block_size", 256))
    batch_size = int(cfg.get("batch_size", 8))
    max_batches_per_epoch = int(cfg.get("max_batches_per_epoch", 0)) or None

    params = cfg.get("params", {})
    epochs = int(params.get("epochs", 1))
    lr = float(params.get("learning_rate", 5e-5))
    wd = float(params.get("weight_decay", 0.01))
    accum_steps = int(cfg.get("accum_steps", 1))

    results_file = cfg.get("results_file", "results.json")
    ckpt_path = cfg.get("checkpoint_path", os.path.join(os.path.dirname(results_file) or ".", "checkpoint.pt"))
    sample_every = int(cfg.get("sample_every_steps", 200))

    tokenizer = build_tokenizer(tokenizer_name)
    vocab_size = int(cfg.get("vocab_size", getattr(tokenizer, 'vocab_size', 65536) or 65536))

    if model_arch == "Official Gemma (Baseline)":
        model = AutoModelForCausalLM.from_pretrained(tokenizer_name)
    else:
        mc = ModelConfig(
            vocab_size=vocab_size,
            n_layer=int(cfg.get("n_layer", 6)),
            n_head=int(cfg.get("n_head", 8)),
            n_embd=int(cfg.get("n_embd", 512)),
            block_size=block_size,
            dropout=float(cfg.get("dropout", 0.1)),
        )
        model = ResearchTransformer(mc)

    from datasets import load_dataset
    raw = load_dataset(dataset_name)
    if "train" not in raw:
        raw = {"train": raw}
    ds = raw["train"]
    split = ds.train_test_split(test_size=0.05, seed=42) if hasattr(ds, "train_test_split") else {"train": ds, "test": ds}
    train_ds, val_ds = split["train"], split["test"]

    from torch.utils.data import DataLoader
    def collate(examples):
        return collate_batch(examples, tokenizer, block_size)

    train_loader = DataLoader(train_ds, batch_size=batch_size, shuffle=True, collate_fn=collate)
    val_loader = DataLoader(val_ds, batch_size=batch_size, shuffle=False, collate_fn=collate)

    optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=wd)

    model, optimizer, train_loader, val_loader = acc.prepare(model, optimizer, train_loader, val_loader)

    start_epoch = 0
    global_step = 0
    if args.resume and os.path.exists(ckpt_path):
        start_epoch, global_step, _ = load_checkpoint(model, optimizer, ckpt_path)
        acc.print(f"Resumed from checkpoint at epoch {start_epoch}, step {global_step}")

    os.makedirs(os.path.dirname(results_file) or ".", exist_ok=True)
    results = {"config": cfg, "status": "running", "history": [], "samples": []}

    def evaluate():
        model.eval()
        losses = []
        with torch.no_grad():
            for i, batch in enumerate(val_loader):
                out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
                losses.append(acc.gather_for_metrics(out.loss.detach().repeat(batch["input_ids"].size(0))))
                if max_batches_per_epoch and i + 1 >= max_batches_per_epoch:
                    break
        loss = torch.cat(losses).mean().item()
        ppl = math.exp(min(20.0, loss))
        return loss, ppl

    def sample_text(prompt: str = "Once upon a time"):
        model.eval()
        with torch.no_grad():
            ids = tokenizer(prompt, return_tensors="pt").input_ids.to(acc.device)
            gen = model.generate(ids, max_new_tokens=64)
            text = tokenizer.decode(gen[0], skip_special_tokens=True)
            return text

    best_val = float("inf")
    patience, bad_epochs = 3, 0
    start_time = time.time()
    for epoch in range(start_epoch, epochs):
        model.train()
        epoch_start = time.time()
        optimizer.zero_grad()
        running_loss = 0.0

        for i, batch in enumerate(train_loader):
            out = model(input_ids=batch["input_ids"], attention_mask=batch["attention_mask"], labels=batch["labels"])
            loss = out.loss / accum_steps
            acc.backward(loss)

            if (i + 1) % accum_steps == 0:
                optimizer.step()
                optimizer.zero_grad()

            running_loss += out.loss.detach().item()
            global_step += 1

            if sample_every and global_step % sample_every == 0 and acc.is_main_process:
                results["samples"].append({"step": global_step, "text": sample_text()})

            if max_batches_per_epoch and i + 1 >= max_batches_per_epoch:
                break

        if (i + 1) % accum_steps != 0:
            optimizer.step()
            optimizer.zero_grad()

        train_time = time.time() - epoch_start
        val_loss, val_ppl = evaluate()

        try:
            mem = torch.cuda.max_memory_allocated() / (1024 ** 3)
        except Exception:
            mem = None

        results["history"].append({
            "epoch": epoch + 1,
            "train_time_sec": train_time,
            "val_loss": val_loss,
            "val_ppl": val_ppl,
            "max_cuda_mem_gb": mem,
            "effective_batch_size": batch_size * accum_steps,
        })

        improve = val_loss < best_val - 1e-5
        if improve:
            best_val = val_loss
            bad_epochs = 0
            save_checkpoint(acc, model, optimizer, ckpt_path, epoch + 1, global_step, {"best_val": best_val})
        else:
            bad_epochs += 1
            if bad_epochs >= patience:
                acc.print("Early stopping triggered.")
                break

        if acc.is_main_process:
            with open(results_file, "w") as f:
                json.dump(results, f, indent=2)

    total = time.time() - start_time
    results["status"] = "completed"
    results["total_training_time_sec"] = total
    results["final_validation"] = {"loss": best_val, "perplexity": math.exp(min(20.0, best_val))}
    if acc.is_main_process:
        with open(results_file, "w") as f:
            json.dump(results, f, indent=2)
    acc.print(f"Done in {total/60:.1f} min. Best val {best_val:.4f}")

if __name__ == "__main__":
    main()