ragflow / graphrag /general /extractor.py
Kevin Hu
Light GraphRAG (#4585)
47ec63e
raw
history blame
9.44 kB
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
import os
from collections import defaultdict, Counter
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from typing import Callable
from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT
from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \
handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list
from rag.llm.chat_model import Base as CompletionLLM
from rag.utils import truncate
GRAPH_FIELD_SEP = "<SEP>"
DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"]
ENTITY_EXTRACTION_MAX_GLEANINGS = 2
class Extractor:
_llm: CompletionLLM
def __init__(
self,
llm_invoker: CompletionLLM,
language: str | None = "English",
entity_types: list[str] | None = None,
get_entity: Callable | None = None,
set_entity: Callable | None = None,
get_relation: Callable | None = None,
set_relation: Callable | None = None,
):
self._llm = llm_invoker
self._language = language
self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
self._get_entity_ = get_entity
self._set_entity_ = set_entity
self._get_relation_ = get_relation
self._set_relation_ = set_relation
def _chat(self, system, history, gen_conf):
hist = deepcopy(history)
conf = deepcopy(gen_conf)
response = get_llm_cache(self._llm.llm_name, system, hist, conf)
if response:
return response
response = self._llm.chat(system, hist, conf)
if response.find("**ERROR**") >= 0:
raise Exception(response)
set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
return response
def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str):
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
ent_types = [t.lower() for t in self._entity_types]
for record in records:
record_attributes = split_string_by_multi_markers(
record, [tuple_delimiter]
)
if_entities = handle_single_entity_extraction(
record_attributes, chunk_key
)
if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types:
maybe_nodes[if_entities["entity_name"]].append(if_entities)
continue
if_relation = handle_single_relationship_extraction(
record_attributes, chunk_key
)
if if_relation is not None:
maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
if_relation
)
return dict(maybe_nodes), dict(maybe_edges)
def __call__(
self, chunks: list[tuple[str, str]],
callback: Callable | None = None
):
results = []
max_workers = int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 50))
with ThreadPoolExecutor(max_workers=max_workers) as exe:
threads = []
for i, (cid, ck) in enumerate(chunks):
threads.append(
exe.submit(self._process_single_content, (cid, ck)))
for i, _ in enumerate(threads):
n, r, tc = _.result()
if not isinstance(n, Exception):
results.append((n, r))
if callback:
callback(0.5 + 0.1 * i / len(threads), f"Entities extraction progress ... {i + 1}/{len(threads)} ({tc} tokens)")
elif callback:
callback(msg="Knowledge graph extraction error:{}".format(str(n)))
maybe_nodes = defaultdict(list)
maybe_edges = defaultdict(list)
for m_nodes, m_edges in results:
for k, v in m_nodes.items():
maybe_nodes[k].extend(v)
for k, v in m_edges.items():
maybe_edges[tuple(sorted(k))].extend(v)
logging.info("Inserting entities into storage...")
all_entities_data = []
for en_nm, ents in maybe_nodes.items():
all_entities_data.append(self._merge_nodes(en_nm, ents))
logging.info("Inserting relationships into storage...")
all_relationships_data = []
for (src,tgt), rels in maybe_edges.items():
all_relationships_data.append(self._merge_edges(src, tgt, rels))
if not len(all_entities_data) and not len(all_relationships_data):
logging.warning(
"Didn't extract any entities and relationships, maybe your LLM is not working"
)
if not len(all_entities_data):
logging.warning("Didn't extract any entities")
if not len(all_relationships_data):
logging.warning("Didn't extract any relationships")
return all_entities_data, all_relationships_data
def _merge_nodes(self, entity_name: str, entities: list[dict]):
if not entities:
return
already_entity_types = []
already_source_ids = []
already_description = []
already_node = self._get_entity_(entity_name)
if already_node:
already_entity_types.append(already_node["entity_type"])
already_source_ids.extend(already_node["source_id"])
already_description.append(already_node["description"])
entity_type = sorted(
Counter(
[dp["entity_type"] for dp in entities] + already_entity_types
).items(),
key=lambda x: x[1],
reverse=True,
)[0][0]
description = GRAPH_FIELD_SEP.join(
sorted(set([dp["description"] for dp in entities] + already_description))
)
already_source_ids = flat_uniq_list(entities, "source_id")
description = self._handle_entity_relation_summary(
entity_name, description
)
node_data = dict(
entity_type=entity_type,
description=description,
source_id=already_source_ids,
)
node_data["entity_name"] = entity_name
self._set_entity_(entity_name, node_data)
return node_data
def _merge_edges(
self,
src_id: str,
tgt_id: str,
edges_data: list[dict]
):
if not edges_data:
return
already_weights = []
already_source_ids = []
already_description = []
already_keywords = []
relation = self._get_relation_(src_id, tgt_id)
if relation:
already_weights = [relation["weight"]]
already_source_ids = relation["source_id"]
already_description = [relation["description"]]
already_keywords = relation["keywords"]
weight = sum([dp["weight"] for dp in edges_data] + already_weights)
description = GRAPH_FIELD_SEP.join(
sorted(set([dp["description"] for dp in edges_data] + already_description))
)
keywords = flat_uniq_list(edges_data, "keywords") + already_keywords
source_id = flat_uniq_list(edges_data, "source_id") + already_source_ids
for need_insert_id in [src_id, tgt_id]:
if self._get_entity_(need_insert_id):
continue
self._set_entity_(need_insert_id, {
"source_id": source_id,
"description": description,
"entity_type": 'UNKNOWN'
})
description = self._handle_entity_relation_summary(
f"({src_id}, {tgt_id})", description
)
edge_data = dict(
src_id=src_id,
tgt_id=tgt_id,
description=description,
keywords=keywords,
weight=weight,
source_id=source_id
)
self._set_relation_(src_id, tgt_id, edge_data)
return edge_data
def _handle_entity_relation_summary(
self,
entity_or_relation_name: str,
description: str
) -> str:
summary_max_tokens = 512
use_description = truncate(description, summary_max_tokens)
prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
context_base = dict(
entity_name=entity_or_relation_name,
description_list=use_description.split(GRAPH_FIELD_SEP),
language=self._language,
)
use_prompt = prompt_template.format(**context_base)
logging.info(f"Trigger summary: {entity_or_relation_name}")
summary = self._chat(use_prompt, [{"role": "assistant", "content": "Output: "}], {"temperature": 0.8})
return summary