File size: 9,441 Bytes
47ec63e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import logging
import os
from collections import defaultdict, Counter
from concurrent.futures import ThreadPoolExecutor
from copy import deepcopy
from typing import Callable

from graphrag.general.graph_prompt import SUMMARIZE_DESCRIPTIONS_PROMPT
from graphrag.utils import get_llm_cache, set_llm_cache, handle_single_entity_extraction, \
    handle_single_relationship_extraction, split_string_by_multi_markers, flat_uniq_list
from rag.llm.chat_model import Base as CompletionLLM
from rag.utils import truncate

GRAPH_FIELD_SEP = "<SEP>"
DEFAULT_ENTITY_TYPES = ["organization", "person", "geo", "event", "category"]
ENTITY_EXTRACTION_MAX_GLEANINGS = 2


class Extractor:
    _llm: CompletionLLM

    def __init__(
        self,
        llm_invoker: CompletionLLM,
        language: str | None = "English",
        entity_types: list[str] | None = None,
        get_entity: Callable | None = None,
        set_entity: Callable | None = None,
        get_relation: Callable | None = None,
        set_relation: Callable | None = None,
    ):
        self._llm = llm_invoker
        self._language = language
        self._entity_types = entity_types or DEFAULT_ENTITY_TYPES
        self._get_entity_ = get_entity
        self._set_entity_ = set_entity
        self._get_relation_ = get_relation
        self._set_relation_ = set_relation

    def _chat(self, system, history, gen_conf):
        hist = deepcopy(history)
        conf = deepcopy(gen_conf)
        response = get_llm_cache(self._llm.llm_name, system, hist, conf)
        if response:
            return response
        response = self._llm.chat(system, hist, conf)
        if response.find("**ERROR**") >= 0:
            raise Exception(response)
        set_llm_cache(self._llm.llm_name, system, response, history, gen_conf)
        return response

    def _entities_and_relations(self, chunk_key: str, records: list, tuple_delimiter: str):
        maybe_nodes = defaultdict(list)
        maybe_edges = defaultdict(list)
        ent_types = [t.lower() for t in self._entity_types]
        for record in records:
            record_attributes = split_string_by_multi_markers(
                record, [tuple_delimiter]
            )

            if_entities = handle_single_entity_extraction(
                record_attributes, chunk_key
            )
            if if_entities is not None and if_entities.get("entity_type", "unknown").lower() in ent_types:
                maybe_nodes[if_entities["entity_name"]].append(if_entities)
                continue

            if_relation = handle_single_relationship_extraction(
                record_attributes, chunk_key
            )
            if if_relation is not None:
                maybe_edges[(if_relation["src_id"], if_relation["tgt_id"])].append(
                    if_relation
                )
        return dict(maybe_nodes), dict(maybe_edges)

    def __call__(
        self, chunks: list[tuple[str, str]],
            callback: Callable | None = None
    ):

        results = []
        max_workers = int(os.environ.get('GRAPH_EXTRACTOR_MAX_WORKERS', 50))
        with ThreadPoolExecutor(max_workers=max_workers) as exe:
            threads = []
            for i, (cid, ck) in enumerate(chunks):
                threads.append(
                    exe.submit(self._process_single_content, (cid, ck)))

            for i, _ in enumerate(threads):
                n, r, tc = _.result()
                if not isinstance(n, Exception):
                    results.append((n, r))
                    if callback:
                        callback(0.5 + 0.1 * i / len(threads), f"Entities extraction progress ... {i + 1}/{len(threads)} ({tc} tokens)")
                elif callback:
                    callback(msg="Knowledge graph extraction error:{}".format(str(n)))

        maybe_nodes = defaultdict(list)
        maybe_edges = defaultdict(list)
        for m_nodes, m_edges in results:
            for k, v in m_nodes.items():
                maybe_nodes[k].extend(v)
            for k, v in m_edges.items():
                maybe_edges[tuple(sorted(k))].extend(v)
        logging.info("Inserting entities into storage...")
        all_entities_data = []
        for en_nm, ents in maybe_nodes.items():
            all_entities_data.append(self._merge_nodes(en_nm, ents))

        logging.info("Inserting relationships into storage...")
        all_relationships_data = []
        for (src,tgt), rels in maybe_edges.items():
            all_relationships_data.append(self._merge_edges(src, tgt, rels))

        if not len(all_entities_data) and not len(all_relationships_data):
            logging.warning(
                "Didn't extract any entities and relationships, maybe your LLM is not working"
            )

        if not len(all_entities_data):
            logging.warning("Didn't extract any entities")
        if not len(all_relationships_data):
            logging.warning("Didn't extract any relationships")

        return all_entities_data, all_relationships_data

    def _merge_nodes(self, entity_name: str, entities: list[dict]):
        if not entities:
            return
        already_entity_types = []
        already_source_ids = []
        already_description = []

        already_node = self._get_entity_(entity_name)
        if already_node:
            already_entity_types.append(already_node["entity_type"])
            already_source_ids.extend(already_node["source_id"])
            already_description.append(already_node["description"])

        entity_type = sorted(
            Counter(
                [dp["entity_type"] for dp in entities] + already_entity_types
            ).items(),
            key=lambda x: x[1],
            reverse=True,
        )[0][0]
        description = GRAPH_FIELD_SEP.join(
            sorted(set([dp["description"] for dp in entities] + already_description))
        )
        already_source_ids = flat_uniq_list(entities, "source_id")
        description = self._handle_entity_relation_summary(
            entity_name, description
        )
        node_data = dict(
            entity_type=entity_type,
            description=description,
            source_id=already_source_ids,
        )
        node_data["entity_name"] = entity_name
        self._set_entity_(entity_name, node_data)
        return node_data

    def _merge_edges(
            self,
            src_id: str,
            tgt_id: str,
            edges_data: list[dict]
    ):
        if not edges_data:
            return
        already_weights = []
        already_source_ids = []
        already_description = []
        already_keywords = []

        relation = self._get_relation_(src_id, tgt_id)
        if relation:
            already_weights = [relation["weight"]]
            already_source_ids = relation["source_id"]
            already_description = [relation["description"]]
            already_keywords = relation["keywords"]

        weight = sum([dp["weight"] for dp in edges_data] + already_weights)
        description = GRAPH_FIELD_SEP.join(
            sorted(set([dp["description"] for dp in edges_data] + already_description))
        )
        keywords = flat_uniq_list(edges_data, "keywords") + already_keywords
        source_id = flat_uniq_list(edges_data, "source_id") + already_source_ids

        for need_insert_id in [src_id, tgt_id]:
            if self._get_entity_(need_insert_id):
                continue
            self._set_entity_(need_insert_id, {
                        "source_id": source_id,
                        "description": description,
                        "entity_type": 'UNKNOWN'
                    })
        description = self._handle_entity_relation_summary(
            f"({src_id}, {tgt_id})", description
        )
        edge_data = dict(
            src_id=src_id,
            tgt_id=tgt_id,
            description=description,
            keywords=keywords,
            weight=weight,
            source_id=source_id
        )
        self._set_relation_(src_id, tgt_id, edge_data)

        return edge_data

    def _handle_entity_relation_summary(
            self,
            entity_or_relation_name: str,
            description: str
    ) -> str:
        summary_max_tokens = 512
        use_description = truncate(description, summary_max_tokens)
        prompt_template = SUMMARIZE_DESCRIPTIONS_PROMPT
        context_base = dict(
            entity_name=entity_or_relation_name,
            description_list=use_description.split(GRAPH_FIELD_SEP),
            language=self._language,
        )
        use_prompt = prompt_template.format(**context_base)
        logging.info(f"Trigger summary: {entity_or_relation_name}")
        summary = self._chat(use_prompt, [{"role": "assistant", "content": "Output: "}], {"temperature": 0.8})
        return summary