|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import logging |
|
import os |
|
|
|
from api.db.services.user_service import TenantService |
|
from api.utils.file_utils import get_project_base_directory |
|
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel |
|
from api.db import LLMType |
|
from api.db.db_models import DB |
|
from api.db.db_models import LLMFactories, LLM, TenantLLM |
|
from api.db.services.common_service import CommonService |
|
|
|
|
|
class LLMFactoriesService(CommonService): |
|
model = LLMFactories |
|
|
|
|
|
class LLMService(CommonService): |
|
model = LLM |
|
|
|
|
|
class TenantLLMService(CommonService): |
|
model = TenantLLM |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_api_key(cls, tenant_id, model_name): |
|
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name) |
|
if not fid: |
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm) |
|
else: |
|
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid) |
|
if not objs: |
|
return |
|
return objs[0] |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_my_llms(cls, tenant_id): |
|
fields = [ |
|
cls.model.llm_factory, |
|
LLMFactories.logo, |
|
LLMFactories.tags, |
|
cls.model.model_type, |
|
cls.model.llm_name, |
|
cls.model.used_tokens |
|
] |
|
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where( |
|
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts() |
|
|
|
return list(objs) |
|
|
|
@staticmethod |
|
def split_model_name_and_factory(model_name): |
|
arr = model_name.split("@") |
|
if len(arr) < 2: |
|
return model_name, None |
|
if len(arr) > 2: |
|
return "@".join(arr[0:-1]), arr[-1] |
|
try: |
|
fact = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"] |
|
fact = set([f["name"] for f in fact]) |
|
if arr[-1] not in fact: |
|
return model_name, None |
|
return arr[0], arr[-1] |
|
except Exception as e: |
|
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}") |
|
return model_name, None |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def model_instance(cls, tenant_id, llm_type, |
|
llm_name=None, lang="Chinese"): |
|
e, tenant = TenantService.get_by_id(tenant_id) |
|
if not e: |
|
raise LookupError("Tenant not found") |
|
|
|
if llm_type == LLMType.EMBEDDING.value: |
|
mdlnm = tenant.embd_id if not llm_name else llm_name |
|
elif llm_type == LLMType.SPEECH2TEXT.value: |
|
mdlnm = tenant.asr_id |
|
elif llm_type == LLMType.IMAGE2TEXT.value: |
|
mdlnm = tenant.img2txt_id if not llm_name else llm_name |
|
elif llm_type == LLMType.CHAT.value: |
|
mdlnm = tenant.llm_id if not llm_name else llm_name |
|
elif llm_type == LLMType.RERANK: |
|
mdlnm = tenant.rerank_id if not llm_name else llm_name |
|
elif llm_type == LLMType.TTS: |
|
mdlnm = tenant.tts_id if not llm_name else llm_name |
|
else: |
|
assert False, "LLM type error" |
|
|
|
model_config = cls.get_api_key(tenant_id, mdlnm) |
|
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm) |
|
if model_config: |
|
model_config = model_config.to_dict() |
|
if not model_config: |
|
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]: |
|
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid) |
|
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]: |
|
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": mdlnm, "api_base": ""} |
|
if not model_config: |
|
if mdlnm == "flag-embedding": |
|
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", |
|
"llm_name": llm_name, "api_base": ""} |
|
else: |
|
if not mdlnm: |
|
raise LookupError(f"Type of {llm_type} model is not set.") |
|
raise LookupError("Model({}) not authorized".format(mdlnm)) |
|
|
|
if llm_type == LLMType.EMBEDDING.value: |
|
if model_config["llm_factory"] not in EmbeddingModel: |
|
return |
|
return EmbeddingModel[model_config["llm_factory"]]( |
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"]) |
|
|
|
if llm_type == LLMType.RERANK: |
|
if model_config["llm_factory"] not in RerankModel: |
|
return |
|
return RerankModel[model_config["llm_factory"]]( |
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"]) |
|
|
|
if llm_type == LLMType.IMAGE2TEXT.value: |
|
if model_config["llm_factory"] not in CvModel: |
|
return |
|
return CvModel[model_config["llm_factory"]]( |
|
model_config["api_key"], model_config["llm_name"], lang, |
|
base_url=model_config["api_base"] |
|
) |
|
|
|
if llm_type == LLMType.CHAT.value: |
|
if model_config["llm_factory"] not in ChatModel: |
|
return |
|
return ChatModel[model_config["llm_factory"]]( |
|
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"]) |
|
|
|
if llm_type == LLMType.SPEECH2TEXT: |
|
if model_config["llm_factory"] not in Seq2txtModel: |
|
return |
|
return Seq2txtModel[model_config["llm_factory"]]( |
|
key=model_config["api_key"], model_name=model_config["llm_name"], |
|
lang=lang, |
|
base_url=model_config["api_base"] |
|
) |
|
if llm_type == LLMType.TTS: |
|
if model_config["llm_factory"] not in TTSModel: |
|
return |
|
return TTSModel[model_config["llm_factory"]]( |
|
model_config["api_key"], |
|
model_config["llm_name"], |
|
base_url=model_config["api_base"], |
|
) |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None): |
|
e, tenant = TenantService.get_by_id(tenant_id) |
|
if not e: |
|
raise LookupError("Tenant not found") |
|
|
|
if llm_type == LLMType.EMBEDDING.value: |
|
mdlnm = tenant.embd_id |
|
elif llm_type == LLMType.SPEECH2TEXT.value: |
|
mdlnm = tenant.asr_id |
|
elif llm_type == LLMType.IMAGE2TEXT.value: |
|
mdlnm = tenant.img2txt_id |
|
elif llm_type == LLMType.CHAT.value: |
|
mdlnm = tenant.llm_id if not llm_name else llm_name |
|
elif llm_type == LLMType.RERANK: |
|
mdlnm = tenant.rerank_id if not llm_name else llm_name |
|
elif llm_type == LLMType.TTS: |
|
mdlnm = tenant.tts_id if not llm_name else llm_name |
|
else: |
|
assert False, "LLM type error" |
|
|
|
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm) |
|
|
|
num = 0 |
|
try: |
|
if llm_factory: |
|
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory) |
|
else: |
|
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name) |
|
if not tenant_llms: |
|
return num |
|
else: |
|
tenant_llm = tenant_llms[0] |
|
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens)\ |
|
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name)\ |
|
.execute() |
|
except Exception: |
|
logging.exception("TenantLLMService.increase_usage got exception") |
|
return num |
|
|
|
@classmethod |
|
@DB.connection_context() |
|
def get_openai_models(cls): |
|
objs = cls.model.select().where( |
|
(cls.model.llm_factory == "OpenAI"), |
|
~(cls.model.llm_name == "text-embedding-3-small"), |
|
~(cls.model.llm_name == "text-embedding-3-large") |
|
).dicts() |
|
return list(objs) |
|
|
|
|
|
class LLMBundle(object): |
|
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"): |
|
self.tenant_id = tenant_id |
|
self.llm_type = llm_type |
|
self.llm_name = llm_name |
|
self.mdl = TenantLLMService.model_instance( |
|
tenant_id, llm_type, llm_name, lang=lang) |
|
assert self.mdl, "Can't find model for {}/{}/{}".format( |
|
tenant_id, llm_type, llm_name) |
|
self.max_length = 8192 |
|
for lm in LLMService.query(llm_name=llm_name): |
|
self.max_length = lm.max_tokens |
|
break |
|
|
|
def encode(self, texts: list): |
|
embeddings, used_tokens = self.mdl.encode(texts) |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, used_tokens): |
|
logging.error( |
|
"LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens)) |
|
return embeddings, used_tokens |
|
|
|
def encode_queries(self, query: str): |
|
emd, used_tokens = self.mdl.encode_queries(query) |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, used_tokens): |
|
logging.error( |
|
"LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens)) |
|
return emd, used_tokens |
|
|
|
def similarity(self, query: str, texts: list): |
|
sim, used_tokens = self.mdl.similarity(query, texts) |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, used_tokens): |
|
logging.error( |
|
"LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens)) |
|
return sim, used_tokens |
|
|
|
def describe(self, image, max_tokens=300): |
|
txt, used_tokens = self.mdl.describe(image, max_tokens) |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, used_tokens): |
|
logging.error( |
|
"LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens)) |
|
return txt |
|
|
|
def transcription(self, audio): |
|
txt, used_tokens = self.mdl.transcription(audio) |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, used_tokens): |
|
logging.error( |
|
"LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens)) |
|
return txt |
|
|
|
def tts(self, text): |
|
for chunk in self.mdl.tts(text): |
|
if isinstance(chunk,int): |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, chunk, self.llm_name): |
|
logging.error( |
|
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id)) |
|
return |
|
yield chunk |
|
|
|
def chat(self, system, history, gen_conf): |
|
txt, used_tokens = self.mdl.chat(system, history, gen_conf) |
|
if isinstance(txt, int) and not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, used_tokens, self.llm_name): |
|
logging.error( |
|
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens)) |
|
return txt |
|
|
|
def chat_streamly(self, system, history, gen_conf): |
|
for txt in self.mdl.chat_streamly(system, history, gen_conf): |
|
if isinstance(txt, int): |
|
if not TenantLLMService.increase_usage( |
|
self.tenant_id, self.llm_type, txt, self.llm_name): |
|
logging.error( |
|
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt)) |
|
return |
|
yield txt |
|
|