File size: 12,883 Bytes
aeb6dbc 1e02591 8bc2fc9 1e02591 aeb6dbc 1e02591 e10ed78 aeb6dbc bf00d96 aeb6dbc 1e02591 bf00d96 1e02591 aeb6dbc 1e02591 aeb6dbc e10ed78 aeb6dbc 1e02591 0404a52 aeb6dbc bf00d96 aeb6dbc bf00d96 aeb6dbc bf00d96 aeb6dbc 0dbe613 aeb6dbc e10ed78 aeb6dbc e10ed78 aeb6dbc 1e02591 8de8827 aeb6dbc f539fab c14e2e5 f539fab ca5d709 aeb6dbc ca5d709 aeb6dbc 44bea96 aeb6dbc 82bdd9f aeb6dbc ac8ea20 08913be aeb6dbc 8bc2fc9 22fe41e 08913be aeb6dbc 8bc2fc9 22fe41e aeb6dbc 8bc2fc9 22fe41e aeb6dbc 8bc2fc9 22fe41e aeb6dbc 8bc2fc9 22fe41e aeb6dbc ac8ea20 8bc2fc9 22fe41e ac8ea20 08913be ac8ea20 aeb6dbc 8de8827 aeb6dbc 8bc2fc9 22fe41e aeb6dbc 8bc2fc9 22fe41e aeb6dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import logging
import os
from api.db.services.user_service import TenantService
from api.utils.file_utils import get_project_base_directory
from rag.llm import EmbeddingModel, CvModel, ChatModel, RerankModel, Seq2txtModel, TTSModel
from api.db import LLMType
from api.db.db_models import DB
from api.db.db_models import LLMFactories, LLM, TenantLLM
from api.db.services.common_service import CommonService
class LLMFactoriesService(CommonService):
model = LLMFactories
class LLMService(CommonService):
model = LLM
class TenantLLMService(CommonService):
model = TenantLLM
@classmethod
@DB.connection_context()
def get_api_key(cls, tenant_id, model_name):
mdlnm, fid = TenantLLMService.split_model_name_and_factory(model_name)
if not fid:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm)
else:
objs = cls.query(tenant_id=tenant_id, llm_name=mdlnm, llm_factory=fid)
if not objs:
return
return objs[0]
@classmethod
@DB.connection_context()
def get_my_llms(cls, tenant_id):
fields = [
cls.model.llm_factory,
LLMFactories.logo,
LLMFactories.tags,
cls.model.model_type,
cls.model.llm_name,
cls.model.used_tokens
]
objs = cls.model.select(*fields).join(LLMFactories, on=(cls.model.llm_factory == LLMFactories.name)).where(
cls.model.tenant_id == tenant_id, ~cls.model.api_key.is_null()).dicts()
return list(objs)
@staticmethod
def split_model_name_and_factory(model_name):
arr = model_name.split("@")
if len(arr) < 2:
return model_name, None
if len(arr) > 2:
return "@".join(arr[0:-1]), arr[-1]
try:
fact = json.load(open(os.path.join(get_project_base_directory(), "conf/llm_factories.json"), "r"))["factory_llm_infos"]
fact = set([f["name"] for f in fact])
if arr[-1] not in fact:
return model_name, None
return arr[0], arr[-1]
except Exception as e:
logging.exception(f"TenantLLMService.split_model_name_and_factory got exception: {e}")
return model_name, None
@classmethod
@DB.connection_context()
def model_instance(cls, tenant_id, llm_type,
llm_name=None, lang="Chinese"):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id if not llm_name else llm_name
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id if not llm_name else llm_name
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
model_config = cls.get_api_key(tenant_id, mdlnm)
mdlnm, fid = TenantLLMService.split_model_name_and_factory(mdlnm)
if model_config:
model_config = model_config.to_dict()
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key":"", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "",
"llm_name": llm_name, "api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
if llm_type == LLMType.EMBEDDING.value:
if model_config["llm_factory"] not in EmbeddingModel:
return
return EmbeddingModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.RERANK:
if model_config["llm_factory"] not in RerankModel:
return
return RerankModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.IMAGE2TEXT.value:
if model_config["llm_factory"] not in CvModel:
return
return CvModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], lang,
base_url=model_config["api_base"]
)
if llm_type == LLMType.CHAT.value:
if model_config["llm_factory"] not in ChatModel:
return
return ChatModel[model_config["llm_factory"]](
model_config["api_key"], model_config["llm_name"], base_url=model_config["api_base"])
if llm_type == LLMType.SPEECH2TEXT:
if model_config["llm_factory"] not in Seq2txtModel:
return
return Seq2txtModel[model_config["llm_factory"]](
key=model_config["api_key"], model_name=model_config["llm_name"],
lang=lang,
base_url=model_config["api_base"]
)
if llm_type == LLMType.TTS:
if model_config["llm_factory"] not in TTSModel:
return
return TTSModel[model_config["llm_factory"]](
model_config["api_key"],
model_config["llm_name"],
base_url=model_config["api_base"],
)
@classmethod
@DB.connection_context()
def increase_usage(cls, tenant_id, llm_type, used_tokens, llm_name=None):
e, tenant = TenantService.get_by_id(tenant_id)
if not e:
raise LookupError("Tenant not found")
if llm_type == LLMType.EMBEDDING.value:
mdlnm = tenant.embd_id
elif llm_type == LLMType.SPEECH2TEXT.value:
mdlnm = tenant.asr_id
elif llm_type == LLMType.IMAGE2TEXT.value:
mdlnm = tenant.img2txt_id
elif llm_type == LLMType.CHAT.value:
mdlnm = tenant.llm_id if not llm_name else llm_name
elif llm_type == LLMType.RERANK:
mdlnm = tenant.rerank_id if not llm_name else llm_name
elif llm_type == LLMType.TTS:
mdlnm = tenant.tts_id if not llm_name else llm_name
else:
assert False, "LLM type error"
llm_name, llm_factory = TenantLLMService.split_model_name_and_factory(mdlnm)
num = 0
try:
if llm_factory:
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name, llm_factory=llm_factory)
else:
tenant_llms = cls.query(tenant_id=tenant_id, llm_name=llm_name)
if not tenant_llms:
return num
else:
tenant_llm = tenant_llms[0]
num = cls.model.update(used_tokens=tenant_llm.used_tokens + used_tokens)\
.where(cls.model.tenant_id == tenant_id, cls.model.llm_factory == tenant_llm.llm_factory, cls.model.llm_name == llm_name)\
.execute()
except Exception:
logging.exception("TenantLLMService.increase_usage got exception")
return num
@classmethod
@DB.connection_context()
def get_openai_models(cls):
objs = cls.model.select().where(
(cls.model.llm_factory == "OpenAI"),
~(cls.model.llm_name == "text-embedding-3-small"),
~(cls.model.llm_name == "text-embedding-3-large")
).dicts()
return list(objs)
class LLMBundle(object):
def __init__(self, tenant_id, llm_type, llm_name=None, lang="Chinese"):
self.tenant_id = tenant_id
self.llm_type = llm_type
self.llm_name = llm_name
self.mdl = TenantLLMService.model_instance(
tenant_id, llm_type, llm_name, lang=lang)
assert self.mdl, "Can't find model for {}/{}/{}".format(
tenant_id, llm_type, llm_name)
self.max_length = 8192
for lm in LLMService.query(llm_name=llm_name):
self.max_length = lm.max_tokens
break
def encode(self, texts: list):
embeddings, used_tokens = self.mdl.encode(texts)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.encode can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
return embeddings, used_tokens
def encode_queries(self, query: str):
emd, used_tokens = self.mdl.encode_queries(query)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.encode_queries can't update token usage for {}/EMBEDDING used_tokens: {}".format(self.tenant_id, used_tokens))
return emd, used_tokens
def similarity(self, query: str, texts: list):
sim, used_tokens = self.mdl.similarity(query, texts)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.similarity can't update token usage for {}/RERANK used_tokens: {}".format(self.tenant_id, used_tokens))
return sim, used_tokens
def describe(self, image, max_tokens=300):
txt, used_tokens = self.mdl.describe(image, max_tokens)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.describe can't update token usage for {}/IMAGE2TEXT used_tokens: {}".format(self.tenant_id, used_tokens))
return txt
def transcription(self, audio):
txt, used_tokens = self.mdl.transcription(audio)
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens):
logging.error(
"LLMBundle.transcription can't update token usage for {}/SEQUENCE2TXT used_tokens: {}".format(self.tenant_id, used_tokens))
return txt
def tts(self, text):
for chunk in self.mdl.tts(text):
if isinstance(chunk,int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, chunk, self.llm_name):
logging.error(
"LLMBundle.tts can't update token usage for {}/TTS".format(self.tenant_id))
return
yield chunk
def chat(self, system, history, gen_conf):
txt, used_tokens = self.mdl.chat(system, history, gen_conf)
if isinstance(txt, int) and not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, used_tokens, self.llm_name):
logging.error(
"LLMBundle.chat can't update token usage for {}/CHAT llm_name: {}, used_tokens: {}".format(self.tenant_id, self.llm_name, used_tokens))
return txt
def chat_streamly(self, system, history, gen_conf):
for txt in self.mdl.chat_streamly(system, history, gen_conf):
if isinstance(txt, int):
if not TenantLLMService.increase_usage(
self.tenant_id, self.llm_type, txt, self.llm_name):
logging.error(
"LLMBundle.chat_streamly can't update token usage for {}/CHAT llm_name: {}, content: {}".format(self.tenant_id, self.llm_name, txt))
return
yield txt
|