|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from tika import parser
|
|
from io import BytesIO
|
|
from docx import Document
|
|
from timeit import default_timer as timer
|
|
import re
|
|
from deepdoc.parser.pdf_parser import PlainParser
|
|
from rag.nlp import rag_tokenizer, naive_merge, tokenize_table, tokenize_chunks, find_codec, concat_img, naive_merge_docx, tokenize_chunks_docx
|
|
from deepdoc.parser import PdfParser, ExcelParser, DocxParser, HtmlParser, JsonParser, MarkdownParser
|
|
from rag.settings import cron_logger
|
|
from rag.utils import num_tokens_from_string
|
|
from PIL import Image
|
|
from functools import reduce
|
|
from markdown import markdown
|
|
class Docx(DocxParser):
|
|
def __init__(self):
|
|
pass
|
|
|
|
def get_picture(self, document, paragraph):
|
|
img = paragraph._element.xpath('.//pic:pic')
|
|
if not img:
|
|
return None
|
|
img = img[0]
|
|
embed = img.xpath('.//a:blip/@r:embed')[0]
|
|
related_part = document.part.related_parts[embed]
|
|
image = related_part.image
|
|
image = Image.open(BytesIO(image.blob)).convert('RGB')
|
|
return image
|
|
|
|
def __clean(self, line):
|
|
line = re.sub(r"\u3000", " ", line).strip()
|
|
return line
|
|
|
|
def __call__(self, filename, binary=None, from_page=0, to_page=100000):
|
|
self.doc = Document(
|
|
filename) if not binary else Document(BytesIO(binary))
|
|
pn = 0
|
|
lines = []
|
|
last_image = None
|
|
for p in self.doc.paragraphs:
|
|
if pn > to_page:
|
|
break
|
|
if from_page <= pn < to_page:
|
|
current_image = None
|
|
if p.text.strip():
|
|
if p.style.name == 'Caption':
|
|
former_image = None
|
|
if lines and lines[-1][1] and lines[-1][2] != 'Caption':
|
|
former_image = lines[-1][1].pop()
|
|
elif last_image:
|
|
former_image = last_image
|
|
last_image = None
|
|
lines.append((self.__clean(p.text), [former_image], p.style.name))
|
|
else:
|
|
current_image = self.get_picture(self.doc, p)
|
|
image_list = [current_image]
|
|
if last_image:
|
|
image_list.insert(0, last_image)
|
|
last_image = None
|
|
lines.append((self.__clean(p.text), image_list, p.style.name))
|
|
else:
|
|
if current_image := self.get_picture(self.doc, p):
|
|
if lines:
|
|
lines[-1][1].append(current_image)
|
|
else:
|
|
last_image = current_image
|
|
for run in p.runs:
|
|
if 'lastRenderedPageBreak' in run._element.xml:
|
|
pn += 1
|
|
continue
|
|
if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
|
|
pn += 1
|
|
new_line = [(line[0], reduce(concat_img, line[1])) for line in lines]
|
|
tbls = []
|
|
for tb in self.doc.tables:
|
|
html= "<table>"
|
|
for r in tb.rows:
|
|
html += "<tr>"
|
|
i = 0
|
|
while i < len(r.cells):
|
|
span = 1
|
|
c = r.cells[i]
|
|
for j in range(i+1, len(r.cells)):
|
|
if c.text == r.cells[j].text:
|
|
span += 1
|
|
i = j
|
|
i += 1
|
|
html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
|
|
html += "</tr>"
|
|
html += "</table>"
|
|
tbls.append(((None, html), ""))
|
|
return new_line, tbls
|
|
|
|
|
|
class Pdf(PdfParser):
|
|
def __call__(self, filename, binary=None, from_page=0,
|
|
to_page=100000, zoomin=3, callback=None):
|
|
start = timer()
|
|
callback(msg="OCR is running...")
|
|
self.__images__(
|
|
filename if not binary else binary,
|
|
zoomin,
|
|
from_page,
|
|
to_page,
|
|
callback
|
|
)
|
|
callback(msg="OCR finished")
|
|
cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))
|
|
|
|
start = timer()
|
|
self._layouts_rec(zoomin)
|
|
callback(0.63, "Layout analysis finished.")
|
|
self._table_transformer_job(zoomin)
|
|
callback(0.65, "Table analysis finished.")
|
|
self._text_merge()
|
|
callback(0.67, "Text merging finished")
|
|
tbls = self._extract_table_figure(True, zoomin, True, True)
|
|
|
|
self._concat_downward()
|
|
|
|
|
|
cron_logger.info("layouts: {}".format(timer() - start))
|
|
return [(b["text"], self._line_tag(b, zoomin))
|
|
for b in self.boxes], tbls
|
|
|
|
|
|
class Markdown(MarkdownParser):
|
|
def __call__(self, filename, binary=None):
|
|
txt = ""
|
|
tbls = []
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
txt = f.read()
|
|
remainder, tables = self.extract_tables_and_remainder(f'{txt}\n')
|
|
sections = []
|
|
tbls = []
|
|
for sec in remainder.split("\n"):
|
|
if num_tokens_from_string(sec) > 10 * self.chunk_token_num:
|
|
sections.append((sec[:int(len(sec)/2)], ""))
|
|
sections.append((sec[int(len(sec)/2):], ""))
|
|
else:
|
|
sections.append((sec, ""))
|
|
print(tables)
|
|
for table in tables:
|
|
tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), ""))
|
|
return sections, tbls
|
|
|
|
|
|
def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
lang="Chinese", callback=None, **kwargs):
|
|
"""
|
|
Supported file formats are docx, pdf, excel, txt.
|
|
This method apply the naive ways to chunk files.
|
|
Successive text will be sliced into pieces using 'delimiter'.
|
|
Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.
|
|
"""
|
|
|
|
eng = lang.lower() == "english"
|
|
parser_config = kwargs.get(
|
|
"parser_config", {
|
|
"chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": True})
|
|
doc = {
|
|
"docnm_kwd": filename,
|
|
"title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
|
|
}
|
|
doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
|
|
res = []
|
|
pdf_parser = None
|
|
sections = []
|
|
if re.search(r"\.docx$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections, tbls = Docx()(filename, binary)
|
|
res = tokenize_table(tbls, doc, eng)
|
|
|
|
callback(0.8, "Finish parsing.")
|
|
st = timer()
|
|
|
|
chunks, images = naive_merge_docx(
|
|
sections, int(parser_config.get(
|
|
"chunk_token_num", 128)), parser_config.get(
|
|
"delimiter", "\n!?。;!?"))
|
|
|
|
res.extend(tokenize_chunks_docx(chunks, doc, eng, images))
|
|
cron_logger.info("naive_merge({}): {}".format(filename, timer() - st))
|
|
return res
|
|
|
|
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
|
pdf_parser = Pdf(
|
|
) if parser_config.get("layout_recognize", True) else PlainParser()
|
|
sections, tbls = pdf_parser(filename if not binary else binary,
|
|
from_page=from_page, to_page=to_page, callback=callback)
|
|
res = tokenize_table(tbls, doc, eng)
|
|
|
|
elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
excel_parser = ExcelParser()
|
|
sections = [(l, "") for l in excel_parser.html(binary) if l]
|
|
|
|
elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
txt = ""
|
|
if binary:
|
|
encoding = find_codec(binary)
|
|
txt = binary.decode(encoding, errors="ignore")
|
|
else:
|
|
with open(filename, "r") as f:
|
|
while True:
|
|
l = f.readline()
|
|
if not l:
|
|
break
|
|
txt += l
|
|
sections = []
|
|
for sec in txt.split("\n"):
|
|
if num_tokens_from_string(sec) > 10 * int(parser_config.get("chunk_token_num", 128)):
|
|
sections.append((sec[:int(len(sec)/2)], ""))
|
|
sections.append((sec[int(len(sec)/2):], ""))
|
|
else:
|
|
sections.append((sec, ""))
|
|
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections, tbls = Markdown(int(parser_config.get("chunk_token_num", 128)))(filename, binary)
|
|
res = tokenize_table(tbls, doc, eng)
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections = HtmlParser()(filename, binary)
|
|
sections = [(l, "") for l in sections if l]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.json$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
sections = JsonParser(int(parser_config.get("chunk_token_num", 128)))(binary)
|
|
sections = [(l, "") for l in sections if l]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
|
callback(0.1, "Start to parse.")
|
|
binary = BytesIO(binary)
|
|
doc_parsed = parser.from_buffer(binary)
|
|
sections = doc_parsed['content'].split('\n')
|
|
sections = [(l, "") for l in sections if l]
|
|
callback(0.8, "Finish parsing.")
|
|
|
|
else:
|
|
raise NotImplementedError(
|
|
"file type not supported yet(pdf, xlsx, doc, docx, txt supported)")
|
|
|
|
st = timer()
|
|
chunks = naive_merge(
|
|
sections, int(parser_config.get(
|
|
"chunk_token_num", 128)), parser_config.get(
|
|
"delimiter", "\n!?。;!?"))
|
|
|
|
res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
|
|
cron_logger.info("naive_merge({}): {}".format(filename, timer() - st))
|
|
return res
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
|
|
def dummy(prog=None, msg=""):
|
|
pass
|
|
|
|
chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)
|
|
|