File size: 11,395 Bytes
cdba7f7
 
 
 
 
 
 
 
 
 
 
 
ee82924
0cfb2df
 
977d825
51482f3
b085dec
4adcb3c
5bfd79c
51482f3
c61bcde
4adcb3c
 
5bfd79c
0cfb2df
 
 
 
4adcb3c
 
 
 
 
 
 
 
 
 
 
0cfb2df
 
 
 
 
 
 
 
 
4adcb3c
0cfb2df
 
 
4adcb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cfb2df
 
 
 
 
 
4adcb3c
0cfb2df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc01e0
4adcb3c
0cfb2df
a8294f2
cdba7f7
51482f3
 
b9d91e7
54ec234
51482f3
 
 
 
b83edb4
 
 
279ca43
3cefaa0
51482f3
 
cdba7f7
b83edb4
f666f56
b83edb4
f666f56
b83edb4
4e03dc3
f1ccc7f
 
 
f666f56
977d825
79ada0b
 
51482f3
 
5bfd79c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79ada0b
 
a8294f2
1ed30a6
a8294f2
 
 
 
f666f56
79ada0b
 
 
 
51482f3
 
cfd6ece
51482f3
cfd6ece
f666f56
51482f3
 
ae35e13
51482f3
0cfb2df
4adcb3c
 
51482f3
4adcb3c
 
 
 
 
 
 
 
 
 
b085dec
51482f3
79ada0b
f1ccc7f
f666f56
79ada0b
bcb7249
b085dec
08bab63
 
 
366c531
b085dec
5bfd79c
51482f3
 
a8294f2
d54aa01
b5b25b4
51482f3
 
 
 
79ada0b
 
51482f3
c61bcde
 
0de1478
c61bcde
 
 
 
 
51482f3
5bfd79c
 
 
 
 
 
b085dec
858916d
 
 
 
77b7e10
 
 
 
0de1478
77b7e10
858916d
 
ee82924
 
 
 
 
 
 
 
a8294f2
79ada0b
c61bcde
51482f3
977d825
79ada0b
0de1478
 
79ada0b
b085dec
 
977d825
51482f3
 
 
 
 
a8294f2
e34cb81
51482f3
a8294f2
51482f3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from tika import parser
from io import BytesIO
from docx import Document
from timeit import default_timer as timer
import re
from deepdoc.parser.pdf_parser import PlainParser
from rag.nlp import rag_tokenizer, naive_merge, tokenize_table, tokenize_chunks, find_codec, concat_img, naive_merge_docx, tokenize_chunks_docx
from deepdoc.parser import PdfParser, ExcelParser, DocxParser, HtmlParser, JsonParser, MarkdownParser
from rag.settings import cron_logger
from rag.utils import num_tokens_from_string
from PIL import Image
from functools import reduce
from markdown import markdown
class Docx(DocxParser):
    def __init__(self):
        pass

    def get_picture(self, document, paragraph):
        img = paragraph._element.xpath('.//pic:pic')
        if not img:
            return None
        img = img[0]
        embed = img.xpath('.//a:blip/@r:embed')[0]
        related_part = document.part.related_parts[embed]
        image = related_part.image
        image = Image.open(BytesIO(image.blob)).convert('RGB')
        return image

    def __clean(self, line):
        line = re.sub(r"\u3000", " ", line).strip()
        return line

    def __call__(self, filename, binary=None, from_page=0, to_page=100000):
        self.doc = Document(
            filename) if not binary else Document(BytesIO(binary))
        pn = 0
        lines = []
        last_image = None
        for p in self.doc.paragraphs:
            if pn > to_page:
                break
            if from_page <= pn < to_page:
                current_image = None
                if p.text.strip():
                    if p.style.name == 'Caption':
                        former_image = None
                        if lines and lines[-1][1] and lines[-1][2] != 'Caption':
                            former_image = lines[-1][1].pop()
                        elif last_image:
                            former_image = last_image
                            last_image = None
                        lines.append((self.__clean(p.text), [former_image], p.style.name))
                    else:
                        current_image = self.get_picture(self.doc, p)
                        image_list = [current_image]
                        if last_image:
                            image_list.insert(0, last_image)
                            last_image = None
                        lines.append((self.__clean(p.text), image_list, p.style.name))
                else:
                    if current_image := self.get_picture(self.doc, p):
                        if lines:
                            lines[-1][1].append(current_image)
                        else:
                            last_image = current_image
            for run in p.runs:
                if 'lastRenderedPageBreak' in run._element.xml:
                    pn += 1
                    continue
                if 'w:br' in run._element.xml and 'type="page"' in run._element.xml:
                    pn += 1
        new_line = [(line[0], reduce(concat_img, line[1])) for line in lines]
        tbls = []
        for tb in self.doc.tables:
            html= "<table>"
            for r in tb.rows:
                html += "<tr>"
                i = 0
                while i < len(r.cells):
                    span = 1
                    c = r.cells[i]
                    for j in range(i+1, len(r.cells)):
                        if c.text == r.cells[j].text:
                            span += 1
                            i = j
                    i += 1
                    html += f"<td>{c.text}</td>" if span == 1 else f"<td colspan='{span}'>{c.text}</td>"
                html += "</tr>"
            html += "</table>"
            tbls.append(((None, html), ""))
        return new_line, tbls


class Pdf(PdfParser):
    def __call__(self, filename, binary=None, from_page=0,

                 to_page=100000, zoomin=3, callback=None):
        start = timer()
        callback(msg="OCR is running...")
        self.__images__(
            filename if not binary else binary,
            zoomin,
            from_page,
            to_page,
            callback
        )
        callback(msg="OCR finished")
        cron_logger.info("OCR({}~{}): {}".format(from_page, to_page, timer() - start))

        start = timer()
        self._layouts_rec(zoomin)
        callback(0.63, "Layout analysis finished.")
        self._table_transformer_job(zoomin)
        callback(0.65, "Table analysis finished.")
        self._text_merge()
        callback(0.67, "Text merging finished")
        tbls = self._extract_table_figure(True, zoomin, True, True)
        #self._naive_vertical_merge()
        self._concat_downward()
        #self._filter_forpages()

        cron_logger.info("layouts: {}".format(timer() - start))
        return [(b["text"], self._line_tag(b, zoomin))
                for b in self.boxes], tbls


class Markdown(MarkdownParser):
    def __call__(self, filename, binary=None):
        txt = ""
        tbls = []
        if binary:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
        else:
            with open(filename, "r") as f:
                txt = f.read()
        remainder, tables = self.extract_tables_and_remainder(f'{txt}\n')
        sections = []
        tbls = []
        for sec in remainder.split("\n"):
            if num_tokens_from_string(sec) > 10 * self.chunk_token_num:
                sections.append((sec[:int(len(sec)/2)], ""))
                sections.append((sec[int(len(sec)/2):], ""))
            else:
                sections.append((sec, ""))
        print(tables)
        for table in tables:
            tbls.append(((None, markdown(table, extensions=['markdown.extensions.tables'])), ""))
        return sections, tbls


def chunk(filename, binary=None, from_page=0, to_page=100000,

          lang="Chinese", callback=None, **kwargs):
    """

        Supported file formats are docx, pdf, excel, txt.

        This method apply the naive ways to chunk files.

        Successive text will be sliced into pieces using 'delimiter'.

        Next, these successive pieces are merge into chunks whose token number is no more than 'Max token number'.

    """

    eng = lang.lower() == "english"  # is_english(cks)
    parser_config = kwargs.get(
        "parser_config", {
            "chunk_token_num": 128, "delimiter": "\n!?。;!?", "layout_recognize": True})
    doc = {
        "docnm_kwd": filename,
        "title_tks": rag_tokenizer.tokenize(re.sub(r"\.[a-zA-Z]+$", "", filename))
    }
    doc["title_sm_tks"] = rag_tokenizer.fine_grained_tokenize(doc["title_tks"])
    res = []
    pdf_parser = None
    sections = []
    if re.search(r"\.docx$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections, tbls = Docx()(filename, binary)
        res = tokenize_table(tbls, doc, eng)    # just for table

        callback(0.8, "Finish parsing.")
        st = timer()

        chunks, images = naive_merge_docx(
            sections, int(parser_config.get(
                "chunk_token_num", 128)), parser_config.get(
                "delimiter", "\n!?。;!?"))

        res.extend(tokenize_chunks_docx(chunks, doc, eng, images))
        cron_logger.info("naive_merge({}): {}".format(filename, timer() - st))
        return res

    elif re.search(r"\.pdf$", filename, re.IGNORECASE):
        pdf_parser = Pdf(
        ) if parser_config.get("layout_recognize", True) else PlainParser()
        sections, tbls = pdf_parser(filename if not binary else binary,
                                    from_page=from_page, to_page=to_page, callback=callback)
        res = tokenize_table(tbls, doc, eng)

    elif re.search(r"\.xlsx?$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        excel_parser = ExcelParser()
        sections = [(l, "") for l in excel_parser.html(binary) if l]

    elif re.search(r"\.(txt|py|js|java|c|cpp|h|php|go|ts|sh|cs|kt)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        txt = ""
        if binary:
            encoding = find_codec(binary)
            txt = binary.decode(encoding, errors="ignore")
        else:
            with open(filename, "r") as f:
                while True:
                    l = f.readline()
                    if not l:
                        break
                    txt += l
        sections = []
        for sec in txt.split("\n"):
            if num_tokens_from_string(sec) > 10 * int(parser_config.get("chunk_token_num", 128)):
                sections.append((sec[:int(len(sec)/2)], ""))
                sections.append((sec[int(len(sec)/2):], ""))
            else:
                sections.append((sec, ""))

        callback(0.8, "Finish parsing.")
    
    elif re.search(r"\.(md|markdown)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections, tbls = Markdown(int(parser_config.get("chunk_token_num", 128)))(filename, binary)
        res = tokenize_table(tbls, doc, eng)
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.(htm|html)$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections = HtmlParser()(filename, binary)
        sections = [(l, "") for l in sections if l]
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.json$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        sections = JsonParser(int(parser_config.get("chunk_token_num", 128)))(binary)
        sections = [(l, "") for l in sections if l]
        callback(0.8, "Finish parsing.")

    elif re.search(r"\.doc$", filename, re.IGNORECASE):
        callback(0.1, "Start to parse.")
        binary = BytesIO(binary)
        doc_parsed = parser.from_buffer(binary)
        sections = doc_parsed['content'].split('\n')
        sections = [(l, "") for l in sections if l]
        callback(0.8, "Finish parsing.")

    else:
        raise NotImplementedError(
            "file type not supported yet(pdf, xlsx, doc, docx, txt supported)")

    st = timer()
    chunks = naive_merge(
        sections, int(parser_config.get(
            "chunk_token_num", 128)), parser_config.get(
            "delimiter", "\n!?。;!?"))

    res.extend(tokenize_chunks(chunks, doc, eng, pdf_parser))
    cron_logger.info("naive_merge({}): {}".format(filename, timer() - st))
    return res


if __name__ == "__main__":
    import sys

    def dummy(prog=None, msg=""):
        pass

    chunk(sys.argv[1], from_page=0, to_page=10, callback=dummy)