|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pathlib |
|
import datetime |
|
|
|
from api.db.services.dialog_service import keyword_extraction |
|
from rag.app.qa import rmPrefix, beAdoc |
|
from rag.nlp import rag_tokenizer |
|
from api.db import LLMType, ParserType |
|
from api.db.services.llm_service import TenantLLMService |
|
from api.settings import kg_retrievaler |
|
import hashlib |
|
import re |
|
from api.utils.api_utils import token_required |
|
from api.db.db_models import Task |
|
from api.db.services.task_service import TaskService, queue_tasks |
|
from api.utils.api_utils import server_error_response |
|
from api.utils.api_utils import get_result, get_error_data_result |
|
from io import BytesIO |
|
from elasticsearch_dsl import Q |
|
from flask import request, send_file |
|
from api.db import FileSource, TaskStatus, FileType |
|
from api.db.db_models import File |
|
from api.db.services.document_service import DocumentService |
|
from api.db.services.file2document_service import File2DocumentService |
|
from api.db.services.file_service import FileService |
|
from api.db.services.knowledgebase_service import KnowledgebaseService |
|
from api.settings import RetCode, retrievaler |
|
from api.utils.api_utils import construct_json_result,get_parser_config |
|
from rag.nlp import search |
|
from rag.utils import rmSpace |
|
from rag.utils.es_conn import ELASTICSEARCH |
|
from rag.utils.storage_factory import STORAGE_IMPL |
|
import os |
|
|
|
MAXIMUM_OF_UPLOADING_FILES = 256 |
|
|
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents', methods=['POST']) |
|
@token_required |
|
def upload(dataset_id, tenant_id): |
|
if 'file' not in request.files: |
|
return get_error_data_result( |
|
retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR) |
|
file_objs = request.files.getlist('file') |
|
for file_obj in file_objs: |
|
if file_obj.filename == '': |
|
return get_result( |
|
retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR) |
|
|
|
total_size = 0 |
|
for file_obj in file_objs: |
|
file_obj.seek(0, os.SEEK_END) |
|
total_size += file_obj.tell() |
|
file_obj.seek(0) |
|
MAX_TOTAL_FILE_SIZE=10*1024*1024 |
|
if total_size > MAX_TOTAL_FILE_SIZE: |
|
return get_result( |
|
retmsg=f'Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)', |
|
retcode=RetCode.ARGUMENT_ERROR) |
|
e, kb = KnowledgebaseService.get_by_id(dataset_id) |
|
if not e: |
|
raise LookupError(f"Can't find the dataset with ID {dataset_id}!") |
|
err, files= FileService.upload_document(kb, file_objs, tenant_id) |
|
if err: |
|
return get_result( |
|
retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR) |
|
|
|
renamed_doc_list = [] |
|
for file in files: |
|
doc = file[0] |
|
key_mapping = { |
|
"chunk_num": "chunk_count", |
|
"kb_id": "dataset_id", |
|
"token_num": "token_count", |
|
"parser_id": "chunk_method" |
|
} |
|
renamed_doc = {} |
|
for key, value in doc.items(): |
|
new_key = key_mapping.get(key, key) |
|
renamed_doc[new_key] = value |
|
renamed_doc["run"] = "UNSTART" |
|
renamed_doc_list.append(renamed_doc) |
|
return get_result(data=renamed_doc_list) |
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['PUT']) |
|
@token_required |
|
def update_doc(tenant_id, dataset_id, document_id): |
|
req = request.json |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg="You don't own the dataset.") |
|
doc = DocumentService.query(kb_id=dataset_id, id=document_id) |
|
if not doc: |
|
return get_error_data_result(retmsg="The dataset doesn't own the document.") |
|
doc = doc[0] |
|
if "chunk_count" in req: |
|
if req["chunk_count"] != doc.chunk_num: |
|
return get_error_data_result(retmsg="Can't change `chunk_count`.") |
|
if "token_count" in req: |
|
if req["token_count"] != doc.token_num: |
|
return get_error_data_result(retmsg="Can't change `token_count`.") |
|
if "progress" in req: |
|
if req['progress'] != doc.progress: |
|
return get_error_data_result(retmsg="Can't change `progress`.") |
|
|
|
if "name" in req and req["name"] != doc.name: |
|
if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix: |
|
return get_result(retmsg="The extension of file can't be changed", retcode=RetCode.ARGUMENT_ERROR) |
|
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id): |
|
if d.name == req["name"]: |
|
return get_error_data_result( |
|
retmsg="Duplicated document name in the same dataset.") |
|
if not DocumentService.update_by_id( |
|
document_id, {"name": req["name"]}): |
|
return get_error_data_result( |
|
retmsg="Database error (Document rename)!") |
|
|
|
informs = File2DocumentService.get_by_document_id(document_id) |
|
if informs: |
|
e, file = FileService.get_by_id(informs[0].file_id) |
|
FileService.update_by_id(file.id, {"name": req["name"]}) |
|
if "parser_config" in req: |
|
DocumentService.update_parser_config(doc.id, req["parser_config"]) |
|
if "chunk_method" in req: |
|
valid_chunk_method = {"naive","manual","qa","table","paper","book","laws","presentation","picture","one","knowledge_graph","email"} |
|
if req.get("chunk_method") not in valid_chunk_method: |
|
return get_error_data_result(f"`chunk_method` {req['chunk_method']} doesn't exist") |
|
if doc.parser_id.lower() == req["chunk_method"].lower(): |
|
return get_result() |
|
|
|
if doc.type == FileType.VISUAL or re.search( |
|
r"\.(ppt|pptx|pages)$", doc.name): |
|
return get_error_data_result(retmsg="Not supported yet!") |
|
|
|
e = DocumentService.update_by_id(doc.id, |
|
{"parser_id": req["chunk_method"], "progress": 0, "progress_msg": "", |
|
"run": TaskStatus.UNSTART.value}) |
|
if not e: |
|
return get_error_data_result(retmsg="Document not found!") |
|
req["parser_config"] = get_parser_config(req["chunk_method"], req.get("parser_config")) |
|
DocumentService.update_parser_config(doc.id, req["parser_config"]) |
|
if doc.token_num > 0: |
|
e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1, |
|
doc.process_duation * -1) |
|
if not e: |
|
return get_error_data_result(retmsg="Document not found!") |
|
ELASTICSEARCH.deleteByQuery( |
|
Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id)) |
|
|
|
return get_result() |
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['GET']) |
|
@token_required |
|
def download(tenant_id, dataset_id, document_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f'You do not own the dataset {dataset_id}.') |
|
doc = DocumentService.query(kb_id=dataset_id, id=document_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f'The dataset not own the document {document_id}.') |
|
|
|
doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id) |
|
file_stream = STORAGE_IMPL.get(doc_id, doc_location) |
|
if not file_stream: |
|
return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR) |
|
file = BytesIO(file_stream) |
|
|
|
return send_file( |
|
file, |
|
as_attachment=True, |
|
download_name=doc[0].name, |
|
mimetype='application/octet-stream' |
|
) |
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents', methods=['GET']) |
|
@token_required |
|
def list_docs(dataset_id, tenant_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ") |
|
id = request.args.get("id") |
|
if not DocumentService.query(id=id,kb_id=dataset_id): |
|
return get_error_data_result(retmsg=f"You don't own the document {id}.") |
|
offset = int(request.args.get("offset", 1)) |
|
keywords = request.args.get("keywords","") |
|
limit = int(request.args.get("limit", 1024)) |
|
orderby = request.args.get("orderby", "create_time") |
|
if request.args.get("desc") == "False": |
|
desc = False |
|
else: |
|
desc = True |
|
docs, tol = DocumentService.get_list(dataset_id, offset, limit, orderby, desc, keywords, id) |
|
|
|
|
|
renamed_doc_list = [] |
|
for doc in docs: |
|
key_mapping = { |
|
"chunk_num": "chunk_count", |
|
"kb_id": "dataset_id", |
|
"token_num": "token_count", |
|
"parser_id": "chunk_method" |
|
} |
|
run_mapping = { |
|
"0" :"UNSTART", |
|
"1":"RUNNING", |
|
"2":"CANCEL", |
|
"3":"DONE", |
|
"4":"FAIL" |
|
} |
|
renamed_doc = {} |
|
for key, value in doc.items(): |
|
new_key = key_mapping.get(key, key) |
|
renamed_doc[new_key] = value |
|
if key =="run": |
|
renamed_doc["run"]=run_mapping.get(value) |
|
renamed_doc_list.append(renamed_doc) |
|
return get_result(data={"total": tol, "docs": renamed_doc_list}) |
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents', methods=['DELETE']) |
|
@token_required |
|
def delete(tenant_id,dataset_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ") |
|
req = request.json |
|
if not req: |
|
doc_ids=None |
|
else: |
|
doc_ids=req.get("ids") |
|
if not doc_ids: |
|
doc_list = [] |
|
docs=DocumentService.query(kb_id=dataset_id) |
|
for doc in docs: |
|
doc_list.append(doc.id) |
|
else: |
|
doc_list=doc_ids |
|
root_folder = FileService.get_root_folder(tenant_id) |
|
pf_id = root_folder["id"] |
|
FileService.init_knowledgebase_docs(pf_id, tenant_id) |
|
errors = "" |
|
for doc_id in doc_list: |
|
try: |
|
e, doc = DocumentService.get_by_id(doc_id) |
|
if not e: |
|
return get_error_data_result(retmsg="Document not found!") |
|
tenant_id = DocumentService.get_tenant_id(doc_id) |
|
if not tenant_id: |
|
return get_error_data_result(retmsg="Tenant not found!") |
|
|
|
b, n = File2DocumentService.get_storage_address(doc_id=doc_id) |
|
|
|
if not DocumentService.remove_document(doc, tenant_id): |
|
return get_error_data_result( |
|
retmsg="Database error (Document removal)!") |
|
|
|
f2d = File2DocumentService.get_by_document_id(doc_id) |
|
FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id]) |
|
File2DocumentService.delete_by_document_id(doc_id) |
|
|
|
STORAGE_IMPL.rm(b, n) |
|
except Exception as e: |
|
errors += str(e) |
|
|
|
if errors: |
|
return get_result(retmsg=errors, retcode=RetCode.SERVER_ERROR) |
|
|
|
return get_result() |
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/chunks', methods=['POST']) |
|
@token_required |
|
def parse(tenant_id,dataset_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") |
|
req = request.json |
|
if not req.get("document_ids"): |
|
return get_error_data_result("`document_ids` is required") |
|
for id in req["document_ids"]: |
|
doc = DocumentService.query(id=id,kb_id=dataset_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f"You don't own the document {id}.") |
|
info = {"run": "1", "progress": 0} |
|
info["progress_msg"] = "" |
|
info["chunk_num"] = 0 |
|
info["token_num"] = 0 |
|
DocumentService.update_by_id(id, info) |
|
ELASTICSEARCH.deleteByQuery( |
|
Q("match", doc_id=id), idxnm=search.index_name(tenant_id)) |
|
TaskService.filter_delete([Task.doc_id == id]) |
|
e, doc = DocumentService.get_by_id(id) |
|
doc = doc.to_dict() |
|
doc["tenant_id"] = tenant_id |
|
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"]) |
|
queue_tasks(doc, bucket, name) |
|
return get_result() |
|
|
|
@manager.route('/datasets/<dataset_id>/chunks', methods=['DELETE']) |
|
@token_required |
|
def stop_parsing(tenant_id,dataset_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") |
|
req = request.json |
|
if not req.get("document_ids"): |
|
return get_error_data_result("`document_ids` is required") |
|
for id in req["document_ids"]: |
|
doc = DocumentService.query(id=id, kb_id=dataset_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f"You don't own the document {id}.") |
|
if doc[0].progress == 100.0 or doc[0].progress == 0.0: |
|
return get_error_data_result("Can't stop parsing document with progress at 0 or 100") |
|
info = {"run": "2", "progress": 0,"chunk_num":0} |
|
DocumentService.update_by_id(id, info) |
|
ELASTICSEARCH.deleteByQuery( |
|
Q("match", doc_id=id), idxnm=search.index_name(tenant_id)) |
|
return get_result() |
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['GET']) |
|
@token_required |
|
def list_chunks(tenant_id,dataset_id,document_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") |
|
doc=DocumentService.query(id=document_id, kb_id=dataset_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f"You don't own the document {document_id}.") |
|
doc=doc[0] |
|
req = request.args |
|
doc_id = document_id |
|
page = int(req.get("offset", 1)) |
|
size = int(req.get("limit", 30)) |
|
question = req.get("keywords", "") |
|
query = { |
|
"doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True |
|
} |
|
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True) |
|
key_mapping = { |
|
"chunk_num": "chunk_count", |
|
"kb_id": "dataset_id", |
|
"token_num": "token_count", |
|
"parser_id": "chunk_method" |
|
} |
|
run_mapping = { |
|
"0": "UNSTART", |
|
"1": "RUNNING", |
|
"2": "CANCEL", |
|
"3": "DONE", |
|
"4": "FAIL" |
|
} |
|
doc=doc.to_dict() |
|
renamed_doc = {} |
|
for key, value in doc.items(): |
|
new_key = key_mapping.get(key, key) |
|
renamed_doc[new_key] = value |
|
if key == "run": |
|
renamed_doc["run"] = run_mapping.get(str(value)) |
|
res = {"total": sres.total, "chunks": [], "doc": renamed_doc} |
|
origin_chunks = [] |
|
sign = 0 |
|
for id in sres.ids: |
|
d = { |
|
"chunk_id": id, |
|
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[ |
|
id].get( |
|
"content_with_weight", ""), |
|
"doc_id": sres.field[id]["doc_id"], |
|
"docnm_kwd": sres.field[id]["docnm_kwd"], |
|
"important_kwd": sres.field[id].get("important_kwd", []), |
|
"img_id": sres.field[id].get("img_id", ""), |
|
"available_int": sres.field[id].get("available_int", 1), |
|
"positions": sres.field[id].get("position_int", "").split("\t") |
|
} |
|
if len(d["positions"]) % 5 == 0: |
|
poss = [] |
|
for i in range(0, len(d["positions"]), 5): |
|
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]), |
|
float(d["positions"][i + 3]), float(d["positions"][i + 4])]) |
|
d["positions"] = poss |
|
|
|
origin_chunks.append(d) |
|
if req.get("id"): |
|
if req.get("id") == id: |
|
origin_chunks.clear() |
|
origin_chunks.append(d) |
|
sign = 1 |
|
break |
|
if req.get("id"): |
|
if sign == 0: |
|
return get_error_data_result(f"Can't find this chunk {req.get('id')}") |
|
for chunk in origin_chunks: |
|
key_mapping = { |
|
"chunk_id": "id", |
|
"content_with_weight": "content", |
|
"doc_id": "document_id", |
|
"important_kwd": "important_keywords", |
|
"img_id": "image_id", |
|
"available_int":"available" |
|
} |
|
renamed_chunk = {} |
|
for key, value in chunk.items(): |
|
new_key = key_mapping.get(key, key) |
|
renamed_chunk[new_key] = value |
|
if renamed_chunk["available"] == "0": |
|
renamed_chunk["available"] = False |
|
if renamed_chunk["available"] == "1": |
|
renamed_chunk["available"] = True |
|
res["chunks"].append(renamed_chunk) |
|
return get_result(data=res) |
|
|
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['POST']) |
|
@token_required |
|
def add_chunk(tenant_id,dataset_id,document_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") |
|
doc = DocumentService.query(id=document_id, kb_id=dataset_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f"You don't own the document {document_id}.") |
|
doc = doc[0] |
|
req = request.json |
|
if not req.get("content"): |
|
return get_error_data_result(retmsg="`content` is required") |
|
if "important_keywords" in req: |
|
if type(req["important_keywords"]) != list: |
|
return get_error_data_result("`important_keywords` is required to be a list") |
|
md5 = hashlib.md5() |
|
md5.update((req["content"] + document_id).encode("utf-8")) |
|
|
|
chunk_id = md5.hexdigest() |
|
d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]), |
|
"content_with_weight": req["content"]} |
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) |
|
d["important_kwd"] = req.get("important_keywords", []) |
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", []))) |
|
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19] |
|
d["create_timestamp_flt"] = datetime.datetime.now().timestamp() |
|
d["kb_id"] = [doc.kb_id] |
|
d["docnm_kwd"] = doc.name |
|
d["doc_id"] = doc.id |
|
embd_id = DocumentService.get_embd_id(document_id) |
|
embd_mdl = TenantLLMService.model_instance( |
|
tenant_id, LLMType.EMBEDDING.value, embd_id) |
|
print(embd_mdl,flush=True) |
|
v, c = embd_mdl.encode([doc.name, req["content"]]) |
|
v = 0.1 * v[0] + 0.9 * v[1] |
|
d["q_%d_vec" % len(v)] = v.tolist() |
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) |
|
|
|
DocumentService.increment_chunk_num( |
|
doc.id, doc.kb_id, c, 1, 0) |
|
d["chunk_id"] = chunk_id |
|
|
|
key_mapping = { |
|
"chunk_id": "id", |
|
"content_with_weight": "content", |
|
"doc_id": "document_id", |
|
"important_kwd": "important_keywords", |
|
"kb_id": "dataset_id", |
|
"create_timestamp_flt": "create_timestamp", |
|
"create_time": "create_time", |
|
"document_keyword": "document" |
|
} |
|
renamed_chunk = {} |
|
for key, value in d.items(): |
|
if key in key_mapping: |
|
new_key = key_mapping.get(key, key) |
|
renamed_chunk[new_key] = value |
|
return get_result(data={"chunk": renamed_chunk}) |
|
|
|
|
|
|
|
@manager.route('datasets/<dataset_id>/documents/<document_id>/chunks', methods=['DELETE']) |
|
@token_required |
|
def rm_chunk(tenant_id,dataset_id,document_id): |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") |
|
doc = DocumentService.query(id=document_id, kb_id=dataset_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f"You don't own the document {document_id}.") |
|
doc = doc[0] |
|
req = request.json |
|
query = { |
|
"doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True} |
|
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True) |
|
if not req: |
|
chunk_ids=None |
|
else: |
|
chunk_ids=req.get("chunk_ids") |
|
if not chunk_ids: |
|
chunk_list=sres.ids |
|
else: |
|
chunk_list=chunk_ids |
|
for chunk_id in chunk_list: |
|
if chunk_id not in sres.ids: |
|
return get_error_data_result(f"Chunk {chunk_id} not found") |
|
if not ELASTICSEARCH.deleteByQuery( |
|
Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)): |
|
return get_error_data_result(retmsg="Index updating failure") |
|
deleted_chunk_ids = req["chunk_ids"] |
|
chunk_number = len(deleted_chunk_ids) |
|
DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0) |
|
return get_result() |
|
|
|
|
|
|
|
@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>', methods=['PUT']) |
|
@token_required |
|
def update_chunk(tenant_id,dataset_id,document_id,chunk_id): |
|
try: |
|
res = ELASTICSEARCH.get( |
|
chunk_id, search.index_name( |
|
tenant_id)) |
|
except Exception as e: |
|
return get_error_data_result(f"Can't find this chunk {chunk_id}") |
|
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id): |
|
return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.") |
|
doc = DocumentService.query(id=document_id, kb_id=dataset_id) |
|
if not doc: |
|
return get_error_data_result(retmsg=f"You don't own the document {document_id}.") |
|
doc = doc[0] |
|
query = { |
|
"doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True |
|
} |
|
sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True) |
|
if chunk_id not in sres.ids: |
|
return get_error_data_result(f"You don't own the chunk {chunk_id}") |
|
req = request.json |
|
content=res["_source"].get("content_with_weight") |
|
d = { |
|
"id": chunk_id, |
|
"content_with_weight": req.get("content",content)} |
|
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"]) |
|
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"]) |
|
if "important_keywords" in req: |
|
if not isinstance(req["important_keywords"],list): |
|
return get_error_data_result("`important_keywords` should be a list") |
|
d["important_kwd"] = req.get("important_keywords") |
|
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"])) |
|
if "available" in req: |
|
d["available_int"] = int(req["available"]) |
|
embd_id = DocumentService.get_embd_id(document_id) |
|
embd_mdl = TenantLLMService.model_instance( |
|
tenant_id, LLMType.EMBEDDING.value, embd_id) |
|
if doc.parser_id == ParserType.QA: |
|
arr = [ |
|
t for t in re.split( |
|
r"[\n\t]", |
|
d["content_with_weight"]) if len(t) > 1] |
|
if len(arr) != 2: |
|
return get_error_data_result( |
|
retmsg="Q&A must be separated by TAB/ENTER key.") |
|
q, a = rmPrefix(arr[0]), rmPrefix(arr[1]) |
|
d = beAdoc(d, arr[0], arr[1], not any( |
|
[rag_tokenizer.is_chinese(t) for t in q + a])) |
|
|
|
v, c = embd_mdl.encode([doc.name, d["content_with_weight"]]) |
|
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1] |
|
d["q_%d_vec" % len(v)] = v.tolist() |
|
ELASTICSEARCH.upsert([d], search.index_name(tenant_id)) |
|
return get_result() |
|
|
|
|
|
|
|
@manager.route('/retrieval', methods=['POST']) |
|
@token_required |
|
def retrieval_test(tenant_id): |
|
req = request.json |
|
if not req.get("dataset_ids"): |
|
return get_error_data_result("`datasets` is required.") |
|
kb_ids = req["dataset_ids"] |
|
if not isinstance(kb_ids,list): |
|
return get_error_data_result("`datasets` should be a list") |
|
kbs = KnowledgebaseService.get_by_ids(kb_ids) |
|
for id in kb_ids: |
|
if not KnowledgebaseService.query(id=id,tenant_id=tenant_id): |
|
return get_error_data_result(f"You don't own the dataset {id}.") |
|
embd_nms = list(set([kb.embd_id for kb in kbs])) |
|
if len(embd_nms) != 1: |
|
return get_result( |
|
retmsg='Datasets use different embedding models."', |
|
retcode=RetCode.AUTHENTICATION_ERROR) |
|
if "question" not in req: |
|
return get_error_data_result("`question` is required.") |
|
page = int(req.get("offset", 1)) |
|
size = int(req.get("limit", 1024)) |
|
question = req["question"] |
|
doc_ids = req.get("document_ids", []) |
|
if not isinstance(doc_ids,list): |
|
return get_error_data_result("`documents` should be a list") |
|
doc_ids_list=KnowledgebaseService.list_documents_by_ids(kb_ids) |
|
for doc_id in doc_ids: |
|
if doc_id not in doc_ids_list: |
|
return get_error_data_result(f"The datasets don't own the document {doc_id}") |
|
similarity_threshold = float(req.get("similarity_threshold", 0.2)) |
|
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3)) |
|
top = int(req.get("top_k", 1024)) |
|
if req.get("highlight")=="False" or req.get("highlight")=="false": |
|
highlight = False |
|
else: |
|
highlight = True |
|
try: |
|
e, kb = KnowledgebaseService.get_by_id(kb_ids[0]) |
|
if not e: |
|
return get_error_data_result(retmsg="Dataset not found!") |
|
embd_mdl = TenantLLMService.model_instance( |
|
kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id) |
|
|
|
rerank_mdl = None |
|
if req.get("rerank_id"): |
|
rerank_mdl = TenantLLMService.model_instance( |
|
kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"]) |
|
|
|
if req.get("keyword", False): |
|
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT) |
|
question += keyword_extraction(chat_mdl, question) |
|
|
|
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler |
|
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size, |
|
similarity_threshold, vector_similarity_weight, top, |
|
doc_ids, rerank_mdl=rerank_mdl, highlight=highlight) |
|
for c in ranks["chunks"]: |
|
if "vector" in c: |
|
del c["vector"] |
|
|
|
|
|
renamed_chunks = [] |
|
for chunk in ranks["chunks"]: |
|
key_mapping = { |
|
"chunk_id": "id", |
|
"content_with_weight": "content", |
|
"doc_id": "document_id", |
|
"important_kwd": "important_keywords", |
|
"docnm_kwd": "document_keyword" |
|
} |
|
rename_chunk = {} |
|
for key, value in chunk.items(): |
|
new_key = key_mapping.get(key, key) |
|
rename_chunk[new_key] = value |
|
renamed_chunks.append(rename_chunk) |
|
ranks["chunks"] = renamed_chunks |
|
return get_result(data=ranks) |
|
except Exception as e: |
|
if str(e).find("not_found") > 0: |
|
return get_result(retmsg=f'No chunk found! Check the chunk status please!', |
|
retcode=RetCode.DATA_ERROR) |
|
return server_error_response(e) |