File size: 27,969 Bytes
44731b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278278b
 
ce45214
44731b3
278278b
44731b3
278278b
 
44731b3
278278b
 
44731b3
 
278278b
44731b3
 
278278b
 
 
 
ce45214
 
 
 
 
278278b
95da4bf
278278b
 
 
ce45214
95f8bbb
ce45214
533089d
 
 
ce45214
845e389
ce45214
 
 
cd7d2b9
 
ce45214
 
 
cd7d2b9
 
533089d
 
 
 
 
 
 
 
 
 
 
ce45214
 
95da4bf
533089d
ce45214
cd7d2b9
 
95da4bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce45214
 
845e389
ce45214
cd7d2b9
278278b
cd7d2b9
ee8a916
cd7d2b9
 
ee8a916
cd7d2b9
d1a0b33
 
ee8a916
d1a0b33
 
ee8a916
278278b
 
ee8a916
278278b
cd7d2b9
 
 
 
 
 
95da4bf
cd7d2b9
 
 
 
278278b
cd7d2b9
 
 
 
3d9274d
 
ee8a916
95da4bf
 
 
ee8a916
3d9274d
278278b
 
 
cd7d2b9
278278b
 
ee8a916
278278b
 
cd7d2b9
95da4bf
533089d
278278b
 
 
 
cd7d2b9
278278b
 
 
cd7d2b9
ce45214
 
845e389
ce45214
cd7d2b9
 
 
 
 
811d178
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845e389
ce45214
278278b
cd7d2b9
 
 
 
 
 
 
 
ce45214
cd7d2b9
 
 
 
 
74bda08
cd7d2b9
 
 
 
 
95da4bf
cd7d2b9
ee8a916
cd7d2b9
95da4bf
 
 
 
 
 
 
cd7d2b9
 
 
 
533089d
 
cd7d2b9
 
ce45214
 
845e389
ce45214
cd7d2b9
 
 
 
eabf8a3
 
 
 
 
 
 
 
 
 
 
ce45214
 
 
 
eabf8a3
ce45214
 
 
cd7d2b9
ce45214
 
cd7d2b9
ce45214
8a0181f
ce45214
 
cd7d2b9
ce45214
 
 
 
 
 
 
 
 
 
 
cd7d2b9
ce45214
cd7d2b9
278278b
 
845e389
278278b
cd7d2b9
 
 
278278b
3d9274d
 
cd7d2b9
eabf8a3
 
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845e389
278278b
cd7d2b9
 
 
278278b
3d9274d
 
cd7d2b9
3d9274d
 
cd7d2b9
3d9274d
 
533089d
cd7d2b9
 
 
 
 
 
845e389
cd7d2b9
3d9274d
cd7d2b9
 
 
 
 
 
 
 
 
 
278278b
3d9274d
 
 
 
eabf8a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533089d
 
eabf8a3
3d9274d
 
 
 
 
 
 
 
 
 
 
 
 
 
278278b
3d9274d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533089d
 
3d9274d
 
 
 
 
533089d
 
 
 
3d9274d
 
 
278278b
95da4bf
845e389
278278b
95da4bf
cd7d2b9
 
 
 
 
811d178
278278b
cd7d2b9
 
3d9274d
 
 
278278b
cd7d2b9
74bda08
 
d1a0b33
 
278278b
3d9274d
 
278278b
 
cd7d2b9
 
 
 
 
 
533089d
cd7d2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533089d
cd7d2b9
 
 
 
 
 
 
 
278278b
74bda08
845e389
278278b
cd7d2b9
 
 
 
 
 
811d178
278278b
3d9274d
 
 
533089d
 
 
 
 
 
 
 
 
3d9274d
 
cd7d2b9
 
 
 
 
 
 
 
 
95da4bf
845e389
74bda08
ee8a916
3d9274d
 
811d178
 
3d9274d
 
cd7d2b9
 
 
 
 
3d9274d
 
 
 
 
 
 
74bda08
3d9274d
74bda08
cd7d2b9
3d9274d
 
74bda08
3d9274d
95da4bf
 
3d9274d
 
d78cac8
95da4bf
cd7d2b9
 
 
 
 
 
 
3d9274d
cd7d2b9
 
 
 
 
 
 
3d9274d
cd7d2b9
 
 
 
 
 
95da4bf
9a8dfa4
74bda08
 
13b2570
5b9e61c
cd7d2b9
5b9e61c
95da4bf
 
ee8a916
5b9e61c
 
 
ee8a916
 
 
5b9e61c
ee8a916
3d9274d
cd7d2b9
 
95da4bf
13b2570
5b9e61c
 
95da4bf
 
 
 
5b9e61c
13b2570
74bda08
 
811d178
 
 
 
74bda08
ee8a916
74bda08
95da4bf
74bda08
 
 
 
 
 
 
 
 
 
 
 
 
ee8a916
74bda08
811d178
74bda08
 
 
 
 
cd7d2b9
74bda08
 
 
 
 
 
cd7d2b9
74bda08
cd7d2b9
74bda08
 
 
811d178
74bda08
cd7d2b9
74bda08
 
ee8a916
74bda08
278278b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
import pathlib
import datetime

from api.db.services.dialog_service import keyword_extraction
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
from api.db.services.llm_service import TenantLLMService
from api.settings import kg_retrievaler
import hashlib
import re
from api.utils.api_utils import token_required
from api.db.db_models import Task
from api.db.services.task_service import TaskService, queue_tasks
from api.utils.api_utils import server_error_response
from api.utils.api_utils import get_result, get_error_data_result
from io import BytesIO
from elasticsearch_dsl import Q
from flask import request, send_file
from api.db import FileSource, TaskStatus, FileType
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.settings import RetCode, retrievaler
from api.utils.api_utils import construct_json_result,get_parser_config
from rag.nlp import search
from rag.utils import rmSpace
from rag.utils.es_conn import ELASTICSEARCH
from rag.utils.storage_factory import STORAGE_IMPL
import os

MAXIMUM_OF_UPLOADING_FILES = 256



@manager.route('/datasets/<dataset_id>/documents', methods=['POST'])
@token_required
def upload(dataset_id, tenant_id):
    if 'file' not in request.files:
        return get_error_data_result(
            retmsg='No file part!', retcode=RetCode.ARGUMENT_ERROR)
    file_objs = request.files.getlist('file')
    for file_obj in file_objs:
        if file_obj.filename == '':
            return get_result(
                retmsg='No file selected!', retcode=RetCode.ARGUMENT_ERROR)
    # total size
    total_size = 0
    for file_obj in file_objs:
        file_obj.seek(0, os.SEEK_END)
        total_size += file_obj.tell()
        file_obj.seek(0)
    MAX_TOTAL_FILE_SIZE=10*1024*1024
    if total_size > MAX_TOTAL_FILE_SIZE:
        return get_result(
            retmsg=f'Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)',
            retcode=RetCode.ARGUMENT_ERROR)
    e, kb = KnowledgebaseService.get_by_id(dataset_id)
    if not e:
        raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
    err, files= FileService.upload_document(kb, file_objs, tenant_id)
    if err:
        return get_result(
            retmsg="\n".join(err), retcode=RetCode.SERVER_ERROR)
    # rename key's name
    renamed_doc_list = []
    for file in files:
        doc = file[0]
        key_mapping = {
            "chunk_num": "chunk_count",
            "kb_id": "dataset_id",
            "token_num": "token_count",
            "parser_id": "chunk_method"
        }
        renamed_doc = {}
        for key, value in doc.items():
            new_key = key_mapping.get(key, key)
            renamed_doc[new_key] = value
        renamed_doc["run"] = "UNSTART"
        renamed_doc_list.append(renamed_doc)
    return get_result(data=renamed_doc_list)


@manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['PUT'])
@token_required
def update_doc(tenant_id, dataset_id, document_id):
    req = request.json
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg="You don't own the dataset.")
    doc = DocumentService.query(kb_id=dataset_id, id=document_id)
    if not doc:
        return get_error_data_result(retmsg="The dataset doesn't own the document.")
    doc = doc[0]
    if "chunk_count" in req:
        if req["chunk_count"] != doc.chunk_num:
            return get_error_data_result(retmsg="Can't change `chunk_count`.")
    if "token_count" in req:
        if req["token_count"] != doc.token_num:
            return get_error_data_result(retmsg="Can't change `token_count`.")
    if "progress" in req:
        if req['progress'] != doc.progress:
            return get_error_data_result(retmsg="Can't change `progress`.")

    if "name" in req and req["name"] != doc.name:
        if pathlib.Path(req["name"].lower()).suffix != pathlib.Path(doc.name.lower()).suffix:
            return get_result(retmsg="The extension of file can't be changed", retcode=RetCode.ARGUMENT_ERROR)
        for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
            if d.name == req["name"]:
                return get_error_data_result(
                    retmsg="Duplicated document name in the same dataset.")
        if not DocumentService.update_by_id(
                document_id, {"name": req["name"]}):
            return get_error_data_result(
                retmsg="Database error (Document rename)!")

        informs = File2DocumentService.get_by_document_id(document_id)
        if informs:
            e, file = FileService.get_by_id(informs[0].file_id)
            FileService.update_by_id(file.id, {"name": req["name"]})
    if "parser_config" in req:
        DocumentService.update_parser_config(doc.id, req["parser_config"])
    if "chunk_method" in req:
        valid_chunk_method = {"naive","manual","qa","table","paper","book","laws","presentation","picture","one","knowledge_graph","email"}
        if req.get("chunk_method") not in valid_chunk_method:
            return get_error_data_result(f"`chunk_method` {req['chunk_method']} doesn't exist")
        if doc.parser_id.lower() == req["chunk_method"].lower():
                return get_result()

        if doc.type == FileType.VISUAL or re.search(
                r"\.(ppt|pptx|pages)$", doc.name):
            return get_error_data_result(retmsg="Not supported yet!")

        e = DocumentService.update_by_id(doc.id,
                                         {"parser_id": req["chunk_method"], "progress": 0, "progress_msg": "",
                                          "run": TaskStatus.UNSTART.value})
        if not e:
            return get_error_data_result(retmsg="Document not found!")
        req["parser_config"] = get_parser_config(req["chunk_method"], req.get("parser_config"))
        DocumentService.update_parser_config(doc.id, req["parser_config"])
        if doc.token_num > 0:
            e = DocumentService.increment_chunk_num(doc.id, doc.kb_id, doc.token_num * -1, doc.chunk_num * -1,
                                                    doc.process_duation * -1)
            if not e:
                return get_error_data_result(retmsg="Document not found!")
            ELASTICSEARCH.deleteByQuery(
                Q("match", doc_id=doc.id), idxnm=search.index_name(tenant_id))

    return get_result()


@manager.route('/datasets/<dataset_id>/documents/<document_id>', methods=['GET'])
@token_required
def download(tenant_id, dataset_id, document_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f'You do not own the dataset {dataset_id}.')
    doc = DocumentService.query(kb_id=dataset_id, id=document_id)
    if not doc:
        return get_error_data_result(retmsg=f'The dataset not own the document {document_id}.')
    # The process of downloading
    doc_id, doc_location = File2DocumentService.get_storage_address(doc_id=document_id)  # minio address
    file_stream = STORAGE_IMPL.get(doc_id, doc_location)
    if not file_stream:
        return construct_json_result(message="This file is empty.", code=RetCode.DATA_ERROR)
    file = BytesIO(file_stream)
    # Use send_file with a proper filename and MIME type
    return send_file(
        file,
        as_attachment=True,
        download_name=doc[0].name,
        mimetype='application/octet-stream'  # Set a default MIME type
    )


@manager.route('/datasets/<dataset_id>/documents', methods=['GET'])
@token_required
def list_docs(dataset_id, tenant_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
    id = request.args.get("id")
    if not DocumentService.query(id=id,kb_id=dataset_id):
        return get_error_data_result(retmsg=f"You don't own the document {id}.")
    offset = int(request.args.get("offset", 1))
    keywords = request.args.get("keywords","")
    limit = int(request.args.get("limit", 1024))
    orderby = request.args.get("orderby", "create_time")
    if request.args.get("desc") == "False":
        desc = False
    else:
        desc = True
    docs, tol = DocumentService.get_list(dataset_id, offset, limit, orderby, desc, keywords, id)

    # rename key's name
    renamed_doc_list = []
    for doc in docs:
        key_mapping = {
            "chunk_num": "chunk_count",
            "kb_id": "dataset_id",
            "token_num": "token_count",
            "parser_id": "chunk_method"
        }
        run_mapping = {
         "0" :"UNSTART",
         "1":"RUNNING",
         "2":"CANCEL",
         "3":"DONE",
         "4":"FAIL"
        }
        renamed_doc = {}
        for key, value in doc.items():
            new_key = key_mapping.get(key, key)
            renamed_doc[new_key] = value
            if key =="run":
                renamed_doc["run"]=run_mapping.get(value)
        renamed_doc_list.append(renamed_doc)
    return get_result(data={"total": tol, "docs": renamed_doc_list})


@manager.route('/datasets/<dataset_id>/documents', methods=['DELETE'])
@token_required
def delete(tenant_id,dataset_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}. ")
    req = request.json
    if not req:
        doc_ids=None
    else:
        doc_ids=req.get("ids")
    if not doc_ids:
        doc_list = []
        docs=DocumentService.query(kb_id=dataset_id)
        for doc in docs:
            doc_list.append(doc.id)
    else:
        doc_list=doc_ids
    root_folder = FileService.get_root_folder(tenant_id)
    pf_id = root_folder["id"]
    FileService.init_knowledgebase_docs(pf_id, tenant_id)
    errors = ""
    for doc_id in doc_list:
        try:
            e, doc = DocumentService.get_by_id(doc_id)
            if not e:
                return get_error_data_result(retmsg="Document not found!")
            tenant_id = DocumentService.get_tenant_id(doc_id)
            if not tenant_id:
                return get_error_data_result(retmsg="Tenant not found!")

            b, n = File2DocumentService.get_storage_address(doc_id=doc_id)

            if not DocumentService.remove_document(doc, tenant_id):
                return get_error_data_result(
                    retmsg="Database error (Document removal)!")

            f2d = File2DocumentService.get_by_document_id(doc_id)
            FileService.filter_delete([File.source_type == FileSource.KNOWLEDGEBASE, File.id == f2d[0].file_id])
            File2DocumentService.delete_by_document_id(doc_id)

            STORAGE_IMPL.rm(b, n)
        except Exception as e:
            errors += str(e)

    if errors:
        return get_result(retmsg=errors, retcode=RetCode.SERVER_ERROR)

    return get_result()


@manager.route('/datasets/<dataset_id>/chunks', methods=['POST'])
@token_required
def parse(tenant_id,dataset_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
    req = request.json
    if not req.get("document_ids"):
        return get_error_data_result("`document_ids` is required")
    for id in req["document_ids"]:
        doc = DocumentService.query(id=id,kb_id=dataset_id)
        if not doc:
            return get_error_data_result(retmsg=f"You don't own the document {id}.")
        info = {"run": "1", "progress": 0}
        info["progress_msg"] = ""
        info["chunk_num"] = 0
        info["token_num"] = 0
        DocumentService.update_by_id(id, info)
        ELASTICSEARCH.deleteByQuery(
            Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
        TaskService.filter_delete([Task.doc_id == id])
        e, doc = DocumentService.get_by_id(id)
        doc = doc.to_dict()
        doc["tenant_id"] = tenant_id
        bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
        queue_tasks(doc, bucket, name)
    return get_result()

@manager.route('/datasets/<dataset_id>/chunks', methods=['DELETE'])
@token_required
def stop_parsing(tenant_id,dataset_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
    req = request.json
    if not req.get("document_ids"):
        return get_error_data_result("`document_ids` is required")
    for id in req["document_ids"]:
        doc = DocumentService.query(id=id, kb_id=dataset_id)
        if not doc:
            return get_error_data_result(retmsg=f"You don't own the document {id}.")
        if doc[0].progress == 100.0 or doc[0].progress == 0.0:
            return get_error_data_result("Can't stop parsing document with progress at 0 or 100")
        info = {"run": "2", "progress": 0,"chunk_num":0}
        DocumentService.update_by_id(id, info)
        ELASTICSEARCH.deleteByQuery(
            Q("match", doc_id=id), idxnm=search.index_name(tenant_id))
    return get_result()


@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['GET'])
@token_required
def list_chunks(tenant_id,dataset_id,document_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
    doc=DocumentService.query(id=document_id, kb_id=dataset_id)
    if not doc:
        return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
    doc=doc[0]
    req = request.args
    doc_id = document_id
    page = int(req.get("offset", 1))
    size = int(req.get("limit", 30))
    question = req.get("keywords", "")
    query = {
        "doc_ids": [doc_id], "page": page, "size": size, "question": question, "sort": True
    }
    sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
    key_mapping = {
        "chunk_num": "chunk_count",
        "kb_id": "dataset_id",
        "token_num": "token_count",
        "parser_id": "chunk_method"
    }
    run_mapping = {
        "0": "UNSTART",
        "1": "RUNNING",
        "2": "CANCEL",
        "3": "DONE",
        "4": "FAIL"
    }
    doc=doc.to_dict()
    renamed_doc = {}
    for key, value in doc.items():
        new_key = key_mapping.get(key, key)
        renamed_doc[new_key] = value
        if key == "run":
            renamed_doc["run"] = run_mapping.get(str(value))
    res = {"total": sres.total, "chunks": [], "doc": renamed_doc}
    origin_chunks = []
    sign = 0
    for id in sres.ids:
        d = {
            "chunk_id": id,
            "content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
                id].get(
                "content_with_weight", ""),
            "doc_id": sres.field[id]["doc_id"],
            "docnm_kwd": sres.field[id]["docnm_kwd"],
            "important_kwd": sres.field[id].get("important_kwd", []),
            "img_id": sres.field[id].get("img_id", ""),
            "available_int": sres.field[id].get("available_int", 1),
            "positions": sres.field[id].get("position_int", "").split("\t")
        }
        if len(d["positions"]) % 5 == 0:
            poss = []
            for i in range(0, len(d["positions"]), 5):
                poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
                             float(d["positions"][i + 3]), float(d["positions"][i + 4])])
            d["positions"] = poss

        origin_chunks.append(d)
        if req.get("id"):
            if req.get("id") == id:
                origin_chunks.clear()
                origin_chunks.append(d)
                sign = 1
                break
    if req.get("id"):
        if sign == 0:
            return get_error_data_result(f"Can't find this chunk {req.get('id')}")
    for chunk in origin_chunks:
        key_mapping = {
            "chunk_id": "id",
            "content_with_weight": "content",
            "doc_id": "document_id",
            "important_kwd": "important_keywords",
            "img_id": "image_id",
            "available_int":"available"
        }
        renamed_chunk = {}
        for key, value in chunk.items():
            new_key = key_mapping.get(key, key)
            renamed_chunk[new_key] = value
        if renamed_chunk["available"] == "0":
            renamed_chunk["available"] = False
        if renamed_chunk["available"] == "1":
            renamed_chunk["available"] = True
        res["chunks"].append(renamed_chunk)
    return get_result(data=res)



@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks', methods=['POST'])
@token_required
def add_chunk(tenant_id,dataset_id,document_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
    doc = DocumentService.query(id=document_id, kb_id=dataset_id)
    if not doc:
        return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
    doc = doc[0]
    req = request.json
    if not req.get("content"):
        return get_error_data_result(retmsg="`content` is required")
    if "important_keywords" in req:
        if type(req["important_keywords"]) != list:
            return get_error_data_result("`important_keywords` is required to be a list")
    md5 = hashlib.md5()
    md5.update((req["content"] + document_id).encode("utf-8"))

    chunk_id = md5.hexdigest()
    d = {"id": chunk_id, "content_ltks": rag_tokenizer.tokenize(req["content"]),
         "content_with_weight": req["content"]}
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    d["important_kwd"] = req.get("important_keywords", [])
    d["important_tks"] = rag_tokenizer.tokenize(" ".join(req.get("important_keywords", [])))
    d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
    d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
    d["kb_id"] = [doc.kb_id]
    d["docnm_kwd"] = doc.name
    d["doc_id"] = doc.id
    embd_id = DocumentService.get_embd_id(document_id)
    embd_mdl = TenantLLMService.model_instance(
        tenant_id, LLMType.EMBEDDING.value, embd_id)
    print(embd_mdl,flush=True)
    v, c = embd_mdl.encode([doc.name, req["content"]])
    v = 0.1 * v[0] + 0.9 * v[1]
    d["q_%d_vec" % len(v)] = v.tolist()
    ELASTICSEARCH.upsert([d], search.index_name(tenant_id))

    DocumentService.increment_chunk_num(
        doc.id, doc.kb_id, c, 1, 0)
    d["chunk_id"] = chunk_id
    # rename keys
    key_mapping = {
        "chunk_id": "id",
        "content_with_weight": "content",
        "doc_id": "document_id",
        "important_kwd": "important_keywords",
        "kb_id": "dataset_id",
        "create_timestamp_flt": "create_timestamp",
        "create_time": "create_time",
        "document_keyword": "document"
    }
    renamed_chunk = {}
    for key, value in d.items():
        if key in key_mapping:
            new_key = key_mapping.get(key, key)
            renamed_chunk[new_key] = value
    return get_result(data={"chunk": renamed_chunk})
    # return get_result(data={"chunk_id": chunk_id})


@manager.route('datasets/<dataset_id>/documents/<document_id>/chunks', methods=['DELETE'])
@token_required
def rm_chunk(tenant_id,dataset_id,document_id):
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
    doc = DocumentService.query(id=document_id, kb_id=dataset_id)
    if not doc:
        return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
    doc = doc[0]
    req = request.json
    query = {
        "doc_ids": [doc.id], "page": 1, "size": 1024, "question": "", "sort": True}
    sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
    if not req:
        chunk_ids=None
    else:
        chunk_ids=req.get("chunk_ids")
    if not chunk_ids:
        chunk_list=sres.ids
    else:
        chunk_list=chunk_ids
    for chunk_id in chunk_list:
        if chunk_id not in sres.ids:
            return get_error_data_result(f"Chunk {chunk_id} not found")
    if not ELASTICSEARCH.deleteByQuery(
            Q("ids", values=req["chunk_ids"]), search.index_name(tenant_id)):
        return get_error_data_result(retmsg="Index updating failure")
    deleted_chunk_ids = req["chunk_ids"]
    chunk_number = len(deleted_chunk_ids)
    DocumentService.decrement_chunk_num(doc.id, doc.kb_id, 1, chunk_number, 0)
    return get_result()



@manager.route('/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>', methods=['PUT'])
@token_required
def update_chunk(tenant_id,dataset_id,document_id,chunk_id):
    try:
        res = ELASTICSEARCH.get(
        chunk_id, search.index_name(
            tenant_id))
    except Exception as e:
        return get_error_data_result(f"Can't find this chunk {chunk_id}")
    if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
        return get_error_data_result(retmsg=f"You don't own the dataset {dataset_id}.")
    doc = DocumentService.query(id=document_id, kb_id=dataset_id)
    if not doc:
        return get_error_data_result(retmsg=f"You don't own the document {document_id}.")
    doc = doc[0]
    query = {
        "doc_ids": [document_id], "page": 1, "size": 1024, "question": "", "sort": True
    }
    sres = retrievaler.search(query, search.index_name(tenant_id), highlight=True)
    if chunk_id not in sres.ids:
        return get_error_data_result(f"You don't own the chunk {chunk_id}")
    req = request.json
    content=res["_source"].get("content_with_weight")
    d = {
        "id": chunk_id,
        "content_with_weight": req.get("content",content)}
    d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
    d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
    if "important_keywords" in req:
        if not isinstance(req["important_keywords"],list):
            return get_error_data_result("`important_keywords` should be a list")
        d["important_kwd"] = req.get("important_keywords")
        d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
    if "available" in req:
        d["available_int"] = int(req["available"])
    embd_id = DocumentService.get_embd_id(document_id)
    embd_mdl = TenantLLMService.model_instance(
        tenant_id, LLMType.EMBEDDING.value, embd_id)
    if doc.parser_id == ParserType.QA:
        arr = [
            t for t in re.split(
                r"[\n\t]",
                d["content_with_weight"]) if len(t) > 1]
        if len(arr) != 2:
            return get_error_data_result(
                retmsg="Q&A must be separated by TAB/ENTER key.")
        q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
        d = beAdoc(d, arr[0], arr[1], not any(
            [rag_tokenizer.is_chinese(t) for t in q + a]))

    v, c = embd_mdl.encode([doc.name, d["content_with_weight"]])
    v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
    d["q_%d_vec" % len(v)] = v.tolist()
    ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
    return get_result()



@manager.route('/retrieval', methods=['POST'])
@token_required
def retrieval_test(tenant_id):
    req = request.json
    if not req.get("dataset_ids"):
        return get_error_data_result("`datasets` is required.")
    kb_ids = req["dataset_ids"]
    if not isinstance(kb_ids,list):
        return get_error_data_result("`datasets` should be a list")
    kbs = KnowledgebaseService.get_by_ids(kb_ids)
    for id in kb_ids:
        if not KnowledgebaseService.query(id=id,tenant_id=tenant_id):
            return get_error_data_result(f"You don't own the dataset {id}.")
    embd_nms = list(set([kb.embd_id for kb in kbs]))
    if len(embd_nms) != 1:
        return get_result(
            retmsg='Datasets use different embedding models."',
            retcode=RetCode.AUTHENTICATION_ERROR)
    if "question" not in req:
        return get_error_data_result("`question` is required.")
    page = int(req.get("offset", 1))
    size = int(req.get("limit", 1024))
    question = req["question"]
    doc_ids = req.get("document_ids", [])
    if not isinstance(doc_ids,list):
        return get_error_data_result("`documents` should be a list")
    doc_ids_list=KnowledgebaseService.list_documents_by_ids(kb_ids)
    for doc_id in doc_ids:
        if doc_id not in doc_ids_list:
            return get_error_data_result(f"The datasets don't own the document {doc_id}")
    similarity_threshold = float(req.get("similarity_threshold", 0.2))
    vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
    top = int(req.get("top_k", 1024))
    if req.get("highlight")=="False" or  req.get("highlight")=="false":
        highlight = False
    else:
        highlight = True
    try:
        e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
        if not e:
            return get_error_data_result(retmsg="Dataset not found!")
        embd_mdl = TenantLLMService.model_instance(
            kb.tenant_id, LLMType.EMBEDDING.value, llm_name=kb.embd_id)

        rerank_mdl = None
        if req.get("rerank_id"):
            rerank_mdl = TenantLLMService.model_instance(
                kb.tenant_id, LLMType.RERANK.value, llm_name=req["rerank_id"])

        if req.get("keyword", False):
            chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
            question += keyword_extraction(chat_mdl, question)

        retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
        ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, kb_ids, page, size,
                               similarity_threshold, vector_similarity_weight, top,
                               doc_ids, rerank_mdl=rerank_mdl, highlight=highlight)
        for c in ranks["chunks"]:
            if "vector" in c:
                del c["vector"]

        ##rename keys
        renamed_chunks = []
        for chunk in ranks["chunks"]:
            key_mapping = {
                "chunk_id": "id",
                "content_with_weight": "content",
                "doc_id": "document_id",
                "important_kwd": "important_keywords",
                "docnm_kwd": "document_keyword"
            }
            rename_chunk = {}
            for key, value in chunk.items():
                new_key = key_mapping.get(key, key)
                rename_chunk[new_key] = value
            renamed_chunks.append(rename_chunk)
        ranks["chunks"] = renamed_chunks
        return get_result(data=ranks)
    except Exception as e:
        if str(e).find("not_found") > 0:
            return get_result(retmsg=f'No chunk found! Check the chunk status please!',
                                   retcode=RetCode.DATA_ERROR)
        return server_error_response(e)