ragflow / rag /app /manual.py
KevinHuSh
Add task moduel, and pipline the task and every parser (#49)
6224edc
raw
history blame
4.46 kB
import copy
import re
from rag.app import callback__, tokenize
from rag.nlp import huqie
from rag.parser.pdf_parser import HuParser
from rag.utils import num_tokens_from_string
class Pdf(HuParser):
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
filename if not binary else binary,
zoomin,
from_page,
to_page)
callback__(0.2, "OCR finished.", callback)
from timeit import default_timer as timer
start = timer()
self._layouts_paddle(zoomin)
callback__(0.5, "Layout analysis finished.", callback)
print("paddle layouts:", timer() - start)
self._table_transformer_job(zoomin)
callback__(0.7, "Table analysis finished.", callback)
self._text_merge()
self._concat_downward(concat_between_pages=False)
self._filter_forpages()
callback__(0.77, "Text merging finished", callback)
tbls = self._extract_table_figure(True, zoomin, False)
# clean mess
for b in self.boxes:
b["text"] = re.sub(r"([\t γ€€]|\u3000){2,}", " ", b["text"].strip())
# merge chunks with the same bullets
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
b_ = self.boxes[i + 1]
if b["text"].strip()[0] != b_["text"].strip()[0] \
or b["page_number"]!=b_["page_number"] \
or b["top"] > b_["bottom"]:
i += 1
continue
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
# merge title with decent chunk
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
if b.get("layoutno","").find("title") < 0:
i += 1
continue
b_ = self.boxes[i + 1]
b_["text"] = b["text"] + "\n" + b_["text"]
b_["x0"] = min(b["x0"], b_["x0"])
b_["x1"] = max(b["x1"], b_["x1"])
b_["top"] = b["top"]
self.boxes.pop(i)
callback__(0.8, "Parsing finished", callback)
for b in self.boxes: print(b["text"], b.get("layoutno"))
print(tbls)
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None):
pdf_parser = None
paper = {}
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
cks, tbls = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {
"docnm_kwd": filename
}
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
# is it English
eng = pdf_parser.is_english
res = []
# add tables
for img, rows in tbls:
bs = 10
de = ";" if eng else "οΌ›"
for i in range(0, len(rows), bs):
d = copy.deepcopy(doc)
r = de.join(rows[i:i + bs])
r = re.sub(r"\tβ€”β€”(ζ₯θ‡ͺ| in ).*”%s" % de, "", r)
tokenize(d, r, eng)
d["image"] = img
res.append(d)
i = 0
chunk = []
tk_cnt = 0
def add_chunk():
nonlocal chunk, res, doc, pdf_parser, tk_cnt
d = copy.deepcopy(doc)
ck = "\n".join(chunk)
tokenize(d, pdf_parser.remove_tag(ck), pdf_parser.is_english)
d["image"] = pdf_parser.crop(ck)
res.append(d)
chunk = []
tk_cnt = 0
while i < len(cks):
if tk_cnt > 128: add_chunk()
txt = cks[i]
txt_ = pdf_parser.remove_tag(txt)
i += 1
cnt = num_tokens_from_string(txt_)
chunk.append(txt)
tk_cnt += cnt
if chunk: add_chunk()
for i, d in enumerate(res):
print(d)
# d["image"].save(f"./logs/{i}.jpg")
return res
if __name__ == "__main__":
import sys
chunk(sys.argv[1])