File size: 10,753 Bytes
3079197
484e5ab
3079197
 
 
 
 
 
 
 
 
 
 
 
 
29b8637
79ada0b
41c7a59
d0db329
8f9784a
41c7a59
d0db329
 
 
 
436c3b5
 
d0db329
41c7a59
 
 
d0db329
 
3079197
 
 
d0db329
 
 
 
34b2ab3
 
d0db329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41c7a59
79ada0b
 
41c7a59
d0db329
 
 
 
 
 
e06e08c
 
 
3079197
41c7a59
d0db329
 
 
f5f274f
 
 
e4c23fc
d0db329
 
3079197
f5f274f
d0db329
 
e32ef75
d0db329
29b8637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0db329
eba9007
d0db329
e06e08c
3079197
 
 
41c7a59
 
 
 
 
79ada0b
 
 
41c7a59
 
 
 
 
 
 
 
 
79ada0b
 
41c7a59
 
 
 
3079197
d0db329
 
 
3079197
41c7a59
d0db329
41c7a59
e32ef75
5e0a689
 
 
e06e08c
5e0a689
 
41c7a59
5e0a689
 
 
 
 
 
 
 
 
 
1550520
 
8f9784a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b3ce5a
63df91a
 
6b3ce5a
63df91a
 
 
 
 
 
 
 
 
 
 
 
 
1f5bc27
 
 
 
 
 
 
 
 
436c3b5
1f5bc27
 
 
 
 
 
 
 
 
 
 
 
 
8f9784a
436c3b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550520
e06e08c
1550520
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
#
#  Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
#
from openai.lib.azure import AzureOpenAI
from zhipuai import ZhipuAI
import io
from abc import ABC
from ollama import Client
from PIL import Image
from openai import OpenAI
import os
import base64
from io import BytesIO
import json
import requests

from api.utils import get_uuid
from api.utils.file_utils import get_project_base_directory


class Base(ABC):
    def __init__(self, key, model_name):
        pass

    def describe(self, image, max_tokens=300):
        raise NotImplementedError("Please implement encode method!")

    def image2base64(self, image):
        if isinstance(image, bytes):
            return base64.b64encode(image).decode("utf-8")
        if isinstance(image, BytesIO):
            return base64.b64encode(image.getvalue()).decode("utf-8")
        buffered = BytesIO()
        try:
            image.save(buffered, format="JPEG")
        except Exception as e:
            image.save(buffered, format="PNG")
        return base64.b64encode(buffered.getvalue()).decode("utf-8")

    def prompt(self, b64):
        return [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{b64}"
                        },
                    },
                    {
                        "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
                    },
                ],
            }
        ]


class GptV4(Base):
    def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
        if not base_url: base_url="https://api.openai.com/v1"
        self.client = OpenAI(api_key=key, base_url=base_url)
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)
        prompt = self.prompt(b64)
        for i in range(len(prompt)):
            for c in prompt[i]["content"]:
                if "text" in c: c["type"] = "text"

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=prompt,
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens

class AzureGptV4(Base):
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
        self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)
        prompt = self.prompt(b64)
        for i in range(len(prompt)):
            for c in prompt[i]["content"]:
                if "text" in c: c["type"] = "text"

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=prompt,
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens


class QWenCV(Base):
    def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese", **kwargs):
        import dashscope
        dashscope.api_key = key
        self.model_name = model_name
        self.lang = lang

    def prompt(self, binary):
        # stupid as hell
        tmp_dir = get_project_base_directory("tmp")
        if not os.path.exists(tmp_dir):
            os.mkdir(tmp_dir)
        path = os.path.join(tmp_dir, "%s.jpg" % get_uuid())
        Image.open(io.BytesIO(binary)).save(path)
        return [
            {
                "role": "user",
                "content": [
                    {
                        "image": f"file://{path}"
                    },
                    {
                        "text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else
                        "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
                    },
                ],
            }
        ]

    def describe(self, image, max_tokens=300):
        from http import HTTPStatus
        from dashscope import MultiModalConversation
        response = MultiModalConversation.call(model=self.model_name,
                                               messages=self.prompt(image))
        if response.status_code == HTTPStatus.OK:
            return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
        return response.message, 0


class Zhipu4V(Base):
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
        self.client = ZhipuAI(api_key=key)
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=1024):
        b64 = self.image2base64(image)

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=self.prompt(b64),
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens


class OllamaCV(Base):
    def __init__(self, key, model_name, lang="Chinese", **kwargs):
        self.client = Client(host=kwargs["base_url"])
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=1024):
        prompt = self.prompt("")
        try:
            options = {"num_predict": max_tokens}
            response = self.client.generate(
                model=self.model_name,
                prompt=prompt[0]["content"][1]["text"],
                images=[image],
                options=options
            )
            ans = response["response"].strip()
            return ans, 128
        except Exception as e:
            return "**ERROR**: " + str(e), 0


class XinferenceCV(Base):
    def __init__(self, key, model_name="", lang="Chinese", base_url=""):
        self.client = OpenAI(api_key="xxx", base_url=base_url)
        self.model_name = model_name
        self.lang = lang

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)

        res = self.client.chat.completions.create(
            model=self.model_name,
            messages=self.prompt(b64),
            max_tokens=max_tokens,
        )
        return res.choices[0].message.content.strip(), res.usage.total_tokens

class GeminiCV(Base):
    def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
        from google.generativeai import client,GenerativeModel 
        client.configure(api_key=key)
        _client = client.get_default_generative_client()
        self.model_name = model_name
        self.model = GenerativeModel(model_name=self.model_name)
        self.model._client = _client
        self.lang = lang 

    def describe(self, image, max_tokens=2048):
        from PIL.Image import open
        gen_config = {'max_output_tokens':max_tokens}
        prompt = "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
            "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
        b64 = self.image2base64(image) 
        img = open(BytesIO(base64.b64decode(b64))) 
        input = [prompt,img]
        res = self.model.generate_content(
            input,
            generation_config=gen_config,
        )
        return res.text,res.usage_metadata.total_token_count


class OpenRouterCV(Base):
    def __init__(
        self,
        key,
        model_name,
        lang="Chinese",
        base_url="https://openrouter.ai/api/v1/chat/completions",
    ):
        self.model_name = model_name
        self.lang = lang
        self.base_url = "https://openrouter.ai/api/v1/chat/completions"
        self.key = key

    def describe(self, image, max_tokens=300):
        b64 = self.image2base64(image)
        response = requests.post(
            url=self.base_url,
            headers={
                "Authorization": f"Bearer {self.key}",
            },
            data=json.dumps(
                {
                    "model": self.model_name,
                    "messages": self.prompt(b64),
                    "max_tokens": max_tokens,
                }
            ),
        )
        response = response.json()
        return (
            response["choices"][0]["message"]["content"].strip(),
            response["usage"]["total_tokens"],
        )

    def prompt(self, b64):
        return [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{b64}"},
                    },
                    {
                        "type": "text",
                        "text": (
                            "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。"
                            if self.lang.lower() == "chinese"
                            else "Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out."
                        ),
                    },
                ],
            }
        ]


class LocalCV(Base):
    def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
        pass

    def describe(self, image, max_tokens=1024):
        return "", 0