Commit
·
77b7e10
1
Parent(s):
acec9a8
feat: support json file (#1217)
Browse files### What problem does this PR solve?
feat: support json file.
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- [x] New Feature (non-breaking change which adds functionality)
---------
Co-authored-by: KevinHuSh <[email protected]>
- deepdoc/parser/__init__.py +1 -0
- deepdoc/parser/json_parser.py +116 -0
- rag/app/naive.py +7 -1
- rag/nlp/__init__.py +2 -0
deepdoc/parser/__init__.py
CHANGED
@@ -16,3 +16,4 @@ from .docx_parser import RAGFlowDocxParser as DocxParser
|
|
16 |
from .excel_parser import RAGFlowExcelParser as ExcelParser
|
17 |
from .ppt_parser import RAGFlowPptParser as PptParser
|
18 |
from .html_parser import RAGFlowHtmlParser as HtmlParser
|
|
|
|
16 |
from .excel_parser import RAGFlowExcelParser as ExcelParser
|
17 |
from .ppt_parser import RAGFlowPptParser as PptParser
|
18 |
from .html_parser import RAGFlowHtmlParser as HtmlParser
|
19 |
+
from .json_parser import RAGFlowJsonParser as JsonParser
|
deepdoc/parser/json_parser.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# The following documents are mainly referenced, and only adaptation modifications have been made
|
3 |
+
# from https://github.com/langchain-ai/langchain/blob/master/libs/text-splitters/langchain_text_splitters/json.py
|
4 |
+
|
5 |
+
import json
|
6 |
+
from typing import Any, Dict, List, Optional
|
7 |
+
from rag.nlp import find_codec
|
8 |
+
|
9 |
+
class RAGFlowJsonParser:
|
10 |
+
def __init__(
|
11 |
+
self, max_chunk_size: int = 2000, min_chunk_size: Optional[int] = None
|
12 |
+
):
|
13 |
+
super().__init__()
|
14 |
+
self.max_chunk_size = max_chunk_size * 2
|
15 |
+
self.min_chunk_size = (
|
16 |
+
min_chunk_size
|
17 |
+
if min_chunk_size is not None
|
18 |
+
else max(max_chunk_size - 200, 50)
|
19 |
+
)
|
20 |
+
|
21 |
+
def __call__(self, binary):
|
22 |
+
encoding = find_codec(binary)
|
23 |
+
txt = binary.decode(encoding, errors="ignore")
|
24 |
+
json_data = json.loads(txt)
|
25 |
+
chunks = self.split_json(json_data, True)
|
26 |
+
sections = [json.dumps(l, ensure_ascii=False) for l in chunks if l]
|
27 |
+
return sections
|
28 |
+
|
29 |
+
@staticmethod
|
30 |
+
def _json_size(data: Dict) -> int:
|
31 |
+
"""Calculate the size of the serialized JSON object."""
|
32 |
+
return len(json.dumps(data, ensure_ascii=False))
|
33 |
+
|
34 |
+
@staticmethod
|
35 |
+
def _set_nested_dict(d: Dict, path: List[str], value: Any) -> None:
|
36 |
+
"""Set a value in a nested dictionary based on the given path."""
|
37 |
+
for key in path[:-1]:
|
38 |
+
d = d.setdefault(key, {})
|
39 |
+
d[path[-1]] = value
|
40 |
+
|
41 |
+
def _list_to_dict_preprocessing(self, data: Any) -> Any:
|
42 |
+
if isinstance(data, dict):
|
43 |
+
# Process each key-value pair in the dictionary
|
44 |
+
return {k: self._list_to_dict_preprocessing(v) for k, v in data.items()}
|
45 |
+
elif isinstance(data, list):
|
46 |
+
# Convert the list to a dictionary with index-based keys
|
47 |
+
return {
|
48 |
+
str(i): self._list_to_dict_preprocessing(item)
|
49 |
+
for i, item in enumerate(data)
|
50 |
+
}
|
51 |
+
else:
|
52 |
+
# Base case: the item is neither a dict nor a list, so return it unchanged
|
53 |
+
return data
|
54 |
+
|
55 |
+
def _json_split(
|
56 |
+
self,
|
57 |
+
data: Dict[str, Any],
|
58 |
+
current_path: Optional[List[str]] = None,
|
59 |
+
chunks: Optional[List[Dict]] = None,
|
60 |
+
) -> List[Dict]:
|
61 |
+
"""
|
62 |
+
Split json into maximum size dictionaries while preserving structure.
|
63 |
+
"""
|
64 |
+
current_path = current_path or []
|
65 |
+
chunks = chunks or [{}]
|
66 |
+
if isinstance(data, dict):
|
67 |
+
for key, value in data.items():
|
68 |
+
new_path = current_path + [key]
|
69 |
+
chunk_size = self._json_size(chunks[-1])
|
70 |
+
size = self._json_size({key: value})
|
71 |
+
remaining = self.max_chunk_size - chunk_size
|
72 |
+
|
73 |
+
if size < remaining:
|
74 |
+
# Add item to current chunk
|
75 |
+
self._set_nested_dict(chunks[-1], new_path, value)
|
76 |
+
else:
|
77 |
+
if chunk_size >= self.min_chunk_size:
|
78 |
+
# Chunk is big enough, start a new chunk
|
79 |
+
chunks.append({})
|
80 |
+
|
81 |
+
# Iterate
|
82 |
+
self._json_split(value, new_path, chunks)
|
83 |
+
else:
|
84 |
+
# handle single item
|
85 |
+
self._set_nested_dict(chunks[-1], current_path, data)
|
86 |
+
return chunks
|
87 |
+
|
88 |
+
def split_json(
|
89 |
+
self,
|
90 |
+
json_data: Dict[str, Any],
|
91 |
+
convert_lists: bool = False,
|
92 |
+
) -> List[Dict]:
|
93 |
+
"""Splits JSON into a list of JSON chunks"""
|
94 |
+
|
95 |
+
if convert_lists:
|
96 |
+
chunks = self._json_split(self._list_to_dict_preprocessing(json_data))
|
97 |
+
else:
|
98 |
+
chunks = self._json_split(json_data)
|
99 |
+
|
100 |
+
# Remove the last chunk if it's empty
|
101 |
+
if not chunks[-1]:
|
102 |
+
chunks.pop()
|
103 |
+
return chunks
|
104 |
+
|
105 |
+
def split_text(
|
106 |
+
self,
|
107 |
+
json_data: Dict[str, Any],
|
108 |
+
convert_lists: bool = False,
|
109 |
+
ensure_ascii: bool = True,
|
110 |
+
) -> List[str]:
|
111 |
+
"""Splits JSON into a list of JSON formatted strings"""
|
112 |
+
|
113 |
+
chunks = self.split_json(json_data=json_data, convert_lists=convert_lists)
|
114 |
+
|
115 |
+
# Convert to string
|
116 |
+
return [json.dumps(chunk, ensure_ascii=ensure_ascii) for chunk in chunks]
|
rag/app/naive.py
CHANGED
@@ -17,7 +17,7 @@ from timeit import default_timer as timer
|
|
17 |
import re
|
18 |
from deepdoc.parser.pdf_parser import PlainParser
|
19 |
from rag.nlp import rag_tokenizer, naive_merge, tokenize_table, tokenize_chunks, find_codec
|
20 |
-
from deepdoc.parser import PdfParser, ExcelParser, DocxParser, HtmlParser
|
21 |
from rag.settings import cron_logger
|
22 |
from rag.utils import num_tokens_from_string
|
23 |
|
@@ -167,6 +167,12 @@ def chunk(filename, binary=None, from_page=0, to_page=100000,
|
|
167 |
sections = [(l, "") for l in sections if l]
|
168 |
callback(0.8, "Finish parsing.")
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
171 |
callback(0.1, "Start to parse.")
|
172 |
binary = BytesIO(binary)
|
|
|
17 |
import re
|
18 |
from deepdoc.parser.pdf_parser import PlainParser
|
19 |
from rag.nlp import rag_tokenizer, naive_merge, tokenize_table, tokenize_chunks, find_codec
|
20 |
+
from deepdoc.parser import PdfParser, ExcelParser, DocxParser, HtmlParser, JsonParser
|
21 |
from rag.settings import cron_logger
|
22 |
from rag.utils import num_tokens_from_string
|
23 |
|
|
|
167 |
sections = [(l, "") for l in sections if l]
|
168 |
callback(0.8, "Finish parsing.")
|
169 |
|
170 |
+
elif re.search(r"\.json$", filename, re.IGNORECASE):
|
171 |
+
callback(0.1, "Start to parse.")
|
172 |
+
sections = JsonParser(parser_config.get("chunk_token_num", 128))(binary)
|
173 |
+
sections = [(l, "") for l in sections if l]
|
174 |
+
callback(0.8, "Finish parsing.")
|
175 |
+
|
176 |
elif re.search(r"\.doc$", filename, re.IGNORECASE):
|
177 |
callback(0.1, "Start to parse.")
|
178 |
binary = BytesIO(binary)
|
rag/nlp/__init__.py
CHANGED
@@ -471,7 +471,9 @@ def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"):
|
|
471 |
tnum = num_tokens_from_string(t)
|
472 |
if tnum < 8:
|
473 |
pos = ""
|
|
|
474 |
if tk_nums[-1] > chunk_token_num:
|
|
|
475 |
if t.find(pos) < 0:
|
476 |
t += pos
|
477 |
cks.append(t)
|
|
|
471 |
tnum = num_tokens_from_string(t)
|
472 |
if tnum < 8:
|
473 |
pos = ""
|
474 |
+
# Ensure that the length of the merged chunk does not exceed chunk_token_num
|
475 |
if tk_nums[-1] > chunk_token_num:
|
476 |
+
|
477 |
if t.find(pos) < 0:
|
478 |
t += pos
|
479 |
cks.append(t)
|