File size: 13,929 Bytes
3079197 c372afe 3245107 bcb7249 4c52eb9 4a858d3 3245107 c372afe 9fe9fc4 c372afe 3079197 3245107 d0db329 3198faf d0db329 3fc700a 3245107 9bf75d4 3245107 d0db329 4a858d3 d0db329 3245107 d0db329 3245107 9bf75d4 3245107 4a858d3 3245107 4a858d3 c372afe 3245107 9bf75d4 3245107 d0db329 c372afe 9bf75d4 4a858d3 e32ef75 3245107 d0db329 3245107 4a858d3 64a0633 407b252 3245107 d0db329 3245107 d0db329 64a0633 e34cb81 64a0633 3245107 c372afe 3245107 d0db329 9bf75d4 e32ef75 a8294f2 3245107 e32ef75 3245107 c372afe bcb7249 c372afe 3245107 d0db329 3245107 a8294f2 d0db329 7d85666 3245107 d0db329 3245107 d0db329 c372afe d0db329 3245107 d0db329 3245107 d0db329 3245107 d0db329 3245107 d0db329 64a0633 3245107 d0db329 a8294f2 3245107 d0db329 3245107 e32ef75 64350e9 4c52eb9 4a858d3 e32ef75 4a858d3 34b2ab3 e32ef75 3245107 e32ef75 4a858d3 d0db329 4a858d3 e32ef75 4a858d3 e32ef75 4a858d3 d0db329 cfd888e e32ef75 4c52eb9 3245107 4a858d3 cfd888e e32ef75 4a858d3 e32ef75 2edbd4b cfd888e 3245107 365a2ed 3245107 e32ef75 d0db329 e32ef75 d0db329 34b2ab3 407b252 e32ef75 9bf75d4 4a858d3 e32ef75 4a858d3 9bf75d4 3245107 4a858d3 34b2ab3 e32ef75 4a858d3 3245107 4a858d3 34b2ab3 4a858d3 5e0a689 4a858d3 365a2ed 4a858d3 5e0a689 4a858d3 407b252 4a858d3 279ca43 4a858d3 279ca43 4a858d3 5e0a689 365a2ed c372afe 4a858d3 c5ea37c a8294f2 c5ea37c a8294f2 c5ea37c a8294f2 9fe9fc4 a8294f2 c5ea37c a8294f2 9fe9fc4 c5ea37c a8294f2 c5ea37c 9fe9fc4 c5ea37c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
# -*- coding: utf-8 -*-
import json
import re
from copy import deepcopy
from elasticsearch_dsl import Q, Search
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from api.settings import chat_logger
from rag.settings import es_logger
from rag.utils import rmSpace
from rag.nlp import huqie, query
import numpy as np
def index_name(uid): return f"ragflow_{uid}"
class Dealer:
def __init__(self, es):
self.qryr = query.EsQueryer(es)
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
@dataclass
class SearchResult:
total: int
ids: List[str]
query_vector: List[float] = None
field: Optional[Dict] = None
highlight: Optional[Dict] = None
aggregation: Union[List, Dict, None] = None
keywords: Optional[List[str]] = None
group_docs: List[List] = None
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
qv, c = emb_mdl.encode_queries(txt)
return {
"field": "q_%d_vec" % len(qv),
"k": topk,
"similarity": sim,
"num_candidates": topk * 2,
"query_vector": qv
}
def search(self, req, idxnm, emb_mdl=None):
qst = req.get("question", "")
bqry, keywords = self.qryr.question(qst)
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if "available_int" in req:
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(
Q("bool", must_not=Q("range", available_int={"lt": 1})))
bqry.boost = 0.05
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec", "position_int",
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
s = s.highlight("title_ltks")
if not qst:
if not req.get("sort"):
s = s.sort(
{"create_time": {"order": "desc", "unmapped_type": "date"}},
{"create_timestamp_flt": {"order": "desc", "unmapped_type": "float"}}
)
else:
s = s.sort(
{"page_num_int": {"order": "asc", "unmapped_type": "float", "mode": "avg", "numeric_type": "double"}},
{"top_int": {"order": "asc", "unmapped_type": "float", "mode": "avg", "numeric_type": "double"}},
{"create_time": {"order": "desc", "unmapped_type": "date"}},
{"create_timestamp_flt": {"order": "desc", "unmapped_type": "float"}}
)
if qst:
s = s.highlight_options(
fragment_size=120,
number_of_fragments=5,
boundary_scanner_locale="zh-CN",
boundary_scanner="SENTENCE",
boundary_chars=",./;:\\!(),。?:!……()——、"
)
s = s.to_dict()
q_vec = []
if req.get("vector"):
assert emb_mdl, "No embedding model selected"
s["knn"] = self._vector(
qst, emb_mdl, req.get(
"similarity", 0.1), ps)
s["knn"]["filter"] = bqry.to_dict()
if "highlight" in s:
del s["highlight"]
q_vec = s["knn"]["query_vector"]
es_logger.info("【Q】: {}".format(json.dumps(s)))
res = self.es.search(deepcopy(s), idxnm=idxnm, timeout="600s", src=src)
es_logger.info("TOTAL: {}".format(self.es.getTotal(res)))
if self.es.getTotal(res) == 0 and "knn" in s:
bqry, _ = self.qryr.question(qst, min_match="10%")
if req.get("kb_ids"):
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
s["query"] = bqry.to_dict()
s["knn"]["filter"] = bqry.to_dict()
s["knn"]["similarity"] = 0.17
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
es_logger.info("【Q】: {}".format(json.dumps(s)))
kwds = set([])
for k in keywords:
kwds.add(k)
for kk in huqie.qieqie(k).split(" "):
if len(kk) < 2:
continue
if kk in kwds:
continue
kwds.add(kk)
aggs = self.getAggregation(res, "docnm_kwd")
return self.SearchResult(
total=self.es.getTotal(res),
ids=self.es.getDocIds(res),
query_vector=q_vec,
aggregation=aggs,
highlight=self.getHighlight(res),
field=self.getFields(res, src),
keywords=list(kwds)
)
def getAggregation(self, res, g):
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
return
bkts = res["aggregations"]["aggs_" + g]["buckets"]
return [(b["key"], b["doc_count"]) for b in bkts]
def getHighlight(self, res):
def rmspace(line):
eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
r = []
for t in line.split(" "):
if not t:
continue
if len(r) > 0 and len(
t) > 0 and r[-1][-1] in eng and t[0] in eng:
r.append(" ")
r.append(t)
r = "".join(r)
return r
ans = {}
for d in res["hits"]["hits"]:
hlts = d.get("highlight")
if not hlts:
continue
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
return ans
def getFields(self, sres, flds):
res = {}
if not flds:
return {}
for d in self.es.getSource(sres):
m = {n: d.get(n) for n in flds if d.get(n) is not None}
for n, v in m.items():
if isinstance(v, type([])):
m[n] = "\t".join([str(vv) if not isinstance(vv, list) else "\t".join([str(vvv) for vvv in vv]) for vv in v])
continue
if not isinstance(v, type("")):
m[n] = str(m[n])
if n.find("tks")>0: m[n] = rmSpace(m[n])
if m:
res[d["id"]] = m
return res
@staticmethod
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, answer, chunks, chunk_v,
embd_mdl, tkweight=0.7, vtweight=0.3):
assert len(chunks) == len(chunk_v)
pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
pieces[i - 1] += pieces[i][0]
pieces[i] = pieces[i][1:]
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5:
continue
idx.append(i)
pieces_.append(t)
es_logger.info("{} => {}".format(answer, pieces_))
if not pieces_:
return answer
ans_v, _ = embd_mdl.encode(pieces_)
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
cites = {}
for i, a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
huqie.qie(
pieces_[i]).split(" "),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.66:
continue
cites[idx[i]] = list(
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
res = ""
seted = set([])
for i, p in enumerate(pieces):
res += p
if i not in idx:
continue
if i not in cites:
continue
for c in cites[i]: assert int(c) < len(chunk_v)
for c in cites[i]:
if c in seted:continue
res += f" ##{c}$$"
seted.add(c)
return res, seted
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
ins_embd = [
Dealer.trans2floats(
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
if not ins_embd:
return [], [], []
ins_tw = [sres.field[i][cfield].split(" ")
for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(
query).split(" "),
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
return self.qryr.hybrid_similarity(ans_embd,
ins_embd,
huqie.qie(ans).split(" "),
huqie.qie(inst).split(" "))
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
if not question:
return ranks
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold}
sres = self.search(req, index_name(tenant_id), embd_mdl)
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim * -1)
dim = len(sres.query_vector)
start_idx = (page - 1) * page_size
for i in idx:
if sim[i] < similarity_threshold:
break
ranks["total"] += 1
start_idx -= 1
if start_idx >= 0:
continue
if len(ranks["chunks"]) >= page_size:
if aggs:
continue
break
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
did = sres.field[id]["doc_id"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"content_with_weight": sres.field[id]["content_with_weight"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim))),
"positions": sres.field[id].get("position_int", "").split("\t")
}
if len(d["positions"]) % 5 == 0:
poss = []
for i in range(0, len(d["positions"]), 5):
poss.append([float(d["positions"][i]), float(d["positions"][i + 1]), float(d["positions"][i + 2]),
float(d["positions"][i + 3]), float(d["positions"][i + 4])])
d["positions"] = poss
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = {"doc_id": did, "count": 0}
ranks["doc_aggs"][dnm]["count"] += 1
ranks["doc_aggs"] = [{"doc_name": k, "doc_id": v["doc_id"], "count": v["count"]} for k,v in sorted(ranks["doc_aggs"].items(), key=lambda x:x[1]["count"]*-1)]
return ranks
def sql_retrieval(self, sql, fetch_size=128, format="json"):
sql = re.sub(r"[ ]+", " ", sql)
sql = sql.replace("%", "")
es_logger.info(f"Get es sql: {sql}")
replaces = []
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
fld, v = r.group(1), r.group(3)
match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(fld, huqie.qieqie(huqie.qie(v)))
replaces.append(("{}{}'{}'".format(r.group(1), r.group(2), r.group(3)), match))
for p, r in replaces: sql = sql.replace(p, r, 1)
chat_logger.info(f"To es: {sql}")
try:
tbl = self.es.sql(sql, fetch_size, format)
return tbl
except Exception as e:
chat_logger.error(f"SQL failure: {sql} =>" + str(e))
return {"error": str(e)}
|