File size: 46,928 Bytes
44731b3 278278b ce45214 6c8312a 278278b 44731b3 278278b eb7da20 6101699 4ba2b4f 278278b 44731b3 278278b 44731b3 278278b ce45214 19e6d59 278278b ce45214 68ba7f0 533089d 68ba7f0 fe9b6b3 ce45214 19e6d59 cd7d2b9 6101699 19e6d59 ce45214 19e6d59 cd7d2b9 6101699 19e6d59 1061738 533089d 19e6d59 533089d 196c662 6101699 19e6d59 1061738 ce45214 95da4bf 19e6d59 ce45214 6101699 95da4bf 19e6d59 95da4bf ce45214 fe9b6b3 ce45214 cd7d2b9 19e6d59 278278b cd7d2b9 196c662 cd7d2b9 196c662 cd7d2b9 d1a0b33 196c662 d1a0b33 196c662 278278b 19e6d59 196c662 278278b cd7d2b9 19e6d59 6101699 19e6d59 196c662 6101699 19e6d59 cd7d2b9 196c662 19e6d59 196c662 278278b cd7d2b9 3d9274d ee8a916 19e6d59 6c8312a 19e6d59 95da4bf 19e6d59 ee8a916 19e6d59 278278b 19e6d59 196c662 278278b 19e6d59 278278b 196c662 19e6d59 533089d 278278b 19e6d59 278278b 196c662 6101699 278278b cd7d2b9 ce45214 fe9b6b3 ce45214 cd7d2b9 19e6d59 cd7d2b9 196c662 cd7d2b9 19e6d59 196c662 19e6d59 cd7d2b9 19e6d59 cd7d2b9 19e6d59 6101699 19e6d59 cd7d2b9 19e6d59 cd7d2b9 fe9b6b3 ce45214 278278b 19e6d59 f4df7fc 19e6d59 f4df7fc 19e6d59 f4df7fc 19e6d59 1483d00 196c662 cd7d2b9 24da205 19e6d59 196c662 19e6d59 196c662 121b0b5 19e6d59 f4df7fc ce45214 cd7d2b9 19e6d59 121b0b5 19e6d59 74bda08 cd7d2b9 95da4bf cd7d2b9 19e6d59 cd7d2b9 95da4bf 19e6d59 95da4bf cd7d2b9 19e6d59 cd7d2b9 19e6d59 cd7d2b9 ce45214 fe9b6b3 ce45214 19e6d59 1483d00 196c662 cd7d2b9 eabf8a3 19e6d59 eabf8a3 19e6d59 eabf8a3 19e6d59 eabf8a3 19e6d59 ce45214 eabf8a3 ce45214 196c662 ce45214 196c662 ce45214 8a0181f ce45214 cd7d2b9 196c662 19e6d59 ce45214 19e6d59 ce45214 6101699 ce45214 cd7d2b9 278278b fe9b6b3 278278b 19e6d59 1483d00 196c662 278278b 3d9274d cd7d2b9 19e6d59 eabf8a3 196c662 19e6d59 cd7d2b9 6101699 cd7d2b9 19e6d59 fe9b6b3 278278b 19e6d59 1483d00 196c662 278278b 3d9274d cd7d2b9 3d9274d 196c662 24da205 19e6d59 cd7d2b9 6101699 cd7d2b9 fe9b6b3 cd7d2b9 19e6d59 f4df7fc 19e6d59 f4df7fc 19e6d59 1483d00 196c662 19e6d59 cd7d2b9 19e6d59 196c662 19e6d59 cd7d2b9 121b0b5 278278b 3d9274d 19e6d59 3d9274d eabf8a3 19e6d59 eabf8a3 19e6d59 eabf8a3 19e6d59 eabf8a3 533089d b691127 3a77303 6101699 b691127 3a77303 b691127 3a77303 b691127 3a77303 b691127 3a77303 3d9274d 278278b fe9b6b3 19e6d59 278278b 19e6d59 1483d00 196c662 cd7d2b9 19e6d59 196c662 19e6d59 811d178 278278b cd7d2b9 196c662 3d9274d 0404a52 19e6d59 2d7e5db 0404a52 2d7e5db 4ba2b4f 19e6d59 278278b 3d9274d 19e6d59 2d7e5db 278278b b691127 cd7d2b9 b691127 cd7d2b9 19e6d59 2d7e5db cd7d2b9 6101699 cd7d2b9 19e6d59 cd7d2b9 b691127 cd7d2b9 2d7e5db cd7d2b9 19e6d59 cd7d2b9 68ba7f0 cd7d2b9 278278b 74bda08 fe9b6b3 19e6d59 278278b 19e6d59 1483d00 196c662 278278b b691127 6101699 b691127 587bed3 b691127 cd7d2b9 fe9b6b3 19e6d59 74bda08 19e6d59 6101699 b691127 3d9274d 1483d00 196c662 cd7d2b9 19e6d59 196c662 19e6d59 3d9274d 74bda08 b691127 3d9274d 74bda08 3d9274d 19e6d59 95da4bf 2d7e5db 3d9274d 2d7e5db d78cac8 95da4bf cd7d2b9 19e6d59 cd7d2b9 19e6d59 cd7d2b9 196c662 19e6d59 cd7d2b9 19e6d59 cd7d2b9 2d7e5db cd7d2b9 6101699 cd7d2b9 fe9b6b3 74bda08 19e6d59 13b2570 5b9e61c 24da205 5b9e61c 19e6d59 24da205 ee8a916 5b9e61c 1483d00 5b9e61c ee8a916 196c662 6101699 19e6d59 3d9274d cd7d2b9 121b0b5 f4df7fc 13b2570 5b9e61c 19e6d59 95da4bf 19e6d59 95da4bf 19e6d59 13b2570 74bda08 19e6d59 811d178 74bda08 ee8a916 74bda08 196c662 eb7da20 74bda08 eb7da20 74bda08 eb7da20 74bda08 6101699 19e6d59 6c8312a 19e6d59 74bda08 4fd5400 74bda08 cd7d2b9 74bda08 2d7e5db 19e6d59 3a77303 74bda08 cd7d2b9 74bda08 811d178 74bda08 cd7d2b9 74bda08 19e6d59 196c662 6101699 19e6d59 6101699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 |
#
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pathlib
import datetime
from api.db.services.dialog_service import keyword_extraction, label_question
from rag.app.qa import rmPrefix, beAdoc
from rag.nlp import rag_tokenizer
from api.db import LLMType, ParserType
from api.db.services.llm_service import TenantLLMService, LLMBundle
from api import settings
import xxhash
import re
from api.utils.api_utils import token_required
from api.db.db_models import Task
from api.db.services.task_service import TaskService, queue_tasks
from api.utils.api_utils import server_error_response
from api.utils.api_utils import get_result, get_error_data_result
from io import BytesIO
from flask import request, send_file
from api.db import FileSource, TaskStatus, FileType
from api.db.db_models import File
from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.utils.api_utils import construct_json_result, get_parser_config
from rag.nlp import search
from rag.utils import rmSpace
from rag.utils.storage_factory import STORAGE_IMPL
from pydantic import BaseModel, Field, validator
MAXIMUM_OF_UPLOADING_FILES = 256
class Chunk(BaseModel):
id: str = ""
content: str = ""
document_id: str = ""
docnm_kwd: str = ""
important_keywords: list = Field(default_factory=list)
questions: list = Field(default_factory=list)
question_tks: str = ""
image_id: str = ""
available: bool = True
positions: list[list[int]] = Field(default_factory=list)
@validator('positions')
def validate_positions(cls, value):
for sublist in value:
if len(sublist) != 5:
raise ValueError("Each sublist in positions must have a length of 5")
return value
@manager.route("/datasets/<dataset_id>/documents", methods=["POST"]) # noqa: F821
@token_required
def upload(dataset_id, tenant_id):
"""
Upload documents to a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: formData
name: file
type: file
required: true
description: Document files to upload.
responses:
200:
description: Successfully uploaded documents.
schema:
type: object
properties:
data:
type: array
items:
type: object
properties:
id:
type: string
description: Document ID.
name:
type: string
description: Document name.
chunk_count:
type: integer
description: Number of chunks.
token_count:
type: integer
description: Number of tokens.
dataset_id:
type: string
description: ID of the dataset.
chunk_method:
type: string
description: Chunking method used.
run:
type: string
description: Processing status.
"""
if "file" not in request.files:
return get_error_data_result(
message="No file part!", code=settings.RetCode.ARGUMENT_ERROR
)
file_objs = request.files.getlist("file")
for file_obj in file_objs:
if file_obj.filename == "":
return get_result(
message="No file selected!", code=settings.RetCode.ARGUMENT_ERROR
)
'''
# total size
total_size = 0
for file_obj in file_objs:
file_obj.seek(0, os.SEEK_END)
total_size += file_obj.tell()
file_obj.seek(0)
MAX_TOTAL_FILE_SIZE = 10 * 1024 * 1024
if total_size > MAX_TOTAL_FILE_SIZE:
return get_result(
message=f"Total file size exceeds 10MB limit! ({total_size / (1024 * 1024):.2f} MB)",
code=settings.RetCode.ARGUMENT_ERROR,
)
'''
e, kb = KnowledgebaseService.get_by_id(dataset_id)
if not e:
raise LookupError(f"Can't find the dataset with ID {dataset_id}!")
err, files = FileService.upload_document(kb, file_objs, tenant_id)
if err:
return get_result(message="\n".join(err), code=settings.RetCode.SERVER_ERROR)
# rename key's name
renamed_doc_list = []
for file in files:
doc = file[0]
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method",
}
renamed_doc = {}
for key, value in doc.items():
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
renamed_doc["run"] = "UNSTART"
renamed_doc_list.append(renamed_doc)
return get_result(data=renamed_doc_list)
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["PUT"]) # noqa: F821
@token_required
def update_doc(tenant_id, dataset_id, document_id):
"""
Update a document within a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document to update.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
- in: body
name: body
description: Document update parameters.
required: true
schema:
type: object
properties:
name:
type: string
description: New name of the document.
parser_config:
type: object
description: Parser configuration.
chunk_method:
type: string
description: Chunking method.
responses:
200:
description: Document updated successfully.
schema:
type: object
"""
req = request.json
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message="You don't own the dataset.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(message="The dataset doesn't own the document.")
doc = doc[0]
if "chunk_count" in req:
if req["chunk_count"] != doc.chunk_num:
return get_error_data_result(message="Can't change `chunk_count`.")
if "token_count" in req:
if req["token_count"] != doc.token_num:
return get_error_data_result(message="Can't change `token_count`.")
if "progress" in req:
if req["progress"] != doc.progress:
return get_error_data_result(message="Can't change `progress`.")
if "name" in req and req["name"] != doc.name:
if (
pathlib.Path(req["name"].lower()).suffix
!= pathlib.Path(doc.name.lower()).suffix
):
return get_result(
message="The extension of file can't be changed",
code=settings.RetCode.ARGUMENT_ERROR,
)
for d in DocumentService.query(name=req["name"], kb_id=doc.kb_id):
if d.name == req["name"]:
return get_error_data_result(
message="Duplicated document name in the same dataset."
)
if not DocumentService.update_by_id(document_id, {"name": req["name"]}):
return get_error_data_result(message="Database error (Document rename)!")
informs = File2DocumentService.get_by_document_id(document_id)
if informs:
e, file = FileService.get_by_id(informs[0].file_id)
FileService.update_by_id(file.id, {"name": req["name"]})
if "parser_config" in req:
DocumentService.update_parser_config(doc.id, req["parser_config"])
if "chunk_method" in req:
valid_chunk_method = {
"naive",
"manual",
"qa",
"table",
"paper",
"book",
"laws",
"presentation",
"picture",
"one",
"knowledge_graph",
"email",
"tag"
}
if req.get("chunk_method") not in valid_chunk_method:
return get_error_data_result(
f"`chunk_method` {req['chunk_method']} doesn't exist"
)
if doc.parser_id.lower() == req["chunk_method"].lower():
return get_result()
if doc.type == FileType.VISUAL or re.search(r"\.(ppt|pptx|pages)$", doc.name):
return get_error_data_result(message="Not supported yet!")
e = DocumentService.update_by_id(
doc.id,
{
"parser_id": req["chunk_method"],
"progress": 0,
"progress_msg": "",
"run": TaskStatus.UNSTART.value,
},
)
if not e:
return get_error_data_result(message="Document not found!")
req["parser_config"] = get_parser_config(
req["chunk_method"], req.get("parser_config")
)
DocumentService.update_parser_config(doc.id, req["parser_config"])
if doc.token_num > 0:
e = DocumentService.increment_chunk_num(
doc.id,
doc.kb_id,
doc.token_num * -1,
doc.chunk_num * -1,
doc.process_duation * -1,
)
if not e:
return get_error_data_result(message="Document not found!")
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
return get_result()
@manager.route("/datasets/<dataset_id>/documents/<document_id>", methods=["GET"]) # noqa: F821
@token_required
def download(tenant_id, dataset_id, document_id):
"""
Download a document from a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
produces:
- application/octet-stream
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document to download.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Document file stream.
schema:
type: file
400:
description: Error message.
schema:
type: object
"""
if not KnowledgebaseService.query(id=dataset_id, tenant_id=tenant_id):
return get_error_data_result(message=f"You do not own the dataset {dataset_id}.")
doc = DocumentService.query(kb_id=dataset_id, id=document_id)
if not doc:
return get_error_data_result(
message=f"The dataset not own the document {document_id}."
)
# The process of downloading
doc_id, doc_location = File2DocumentService.get_storage_address(
doc_id=document_id
) # minio address
file_stream = STORAGE_IMPL.get(doc_id, doc_location)
if not file_stream:
return construct_json_result(
message="This file is empty.", code=settings.RetCode.DATA_ERROR
)
file = BytesIO(file_stream)
# Use send_file with a proper filename and MIME type
return send_file(
file,
as_attachment=True,
download_name=doc[0].name,
mimetype="application/octet-stream", # Set a default MIME type
)
@manager.route("/datasets/<dataset_id>/documents", methods=["GET"]) # noqa: F821
@token_required
def list_docs(dataset_id, tenant_id):
"""
List documents in a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: query
name: id
type: string
required: false
description: Filter by document ID.
- in: query
name: page
type: integer
required: false
default: 1
description: Page number.
- in: query
name: page_size
type: integer
required: false
default: 30
description: Number of items per page.
- in: query
name: orderby
type: string
required: false
default: "create_time"
description: Field to order by.
- in: query
name: desc
type: boolean
required: false
default: true
description: Order in descending.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: List of documents.
schema:
type: object
properties:
total:
type: integer
description: Total number of documents.
docs:
type: array
items:
type: object
properties:
id:
type: string
description: Document ID.
name:
type: string
description: Document name.
chunk_count:
type: integer
description: Number of chunks.
token_count:
type: integer
description: Number of tokens.
dataset_id:
type: string
description: ID of the dataset.
chunk_method:
type: string
description: Chunking method used.
run:
type: string
description: Processing status.
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
id = request.args.get("id")
name = request.args.get("name")
if not DocumentService.query(id=id, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {id}.")
if not DocumentService.query(name=name, kb_id=dataset_id):
return get_error_data_result(message=f"You don't own the document {name}.")
page = int(request.args.get("page", 1))
keywords = request.args.get("keywords", "")
page_size = int(request.args.get("page_size", 30))
orderby = request.args.get("orderby", "create_time")
if request.args.get("desc") == "False":
desc = False
else:
desc = True
docs, tol = DocumentService.get_list(
dataset_id, page, page_size, orderby, desc, keywords, id, name
)
# rename key's name
renamed_doc_list = []
for doc in docs:
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method",
}
run_mapping = {
"0": "UNSTART",
"1": "RUNNING",
"2": "CANCEL",
"3": "DONE",
"4": "FAIL",
}
renamed_doc = {}
for key, value in doc.items():
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
if key == "run":
renamed_doc["run"] = run_mapping.get(value)
renamed_doc_list.append(renamed_doc)
return get_result(data={"total": tol, "docs": renamed_doc_list})
@manager.route("/datasets/<dataset_id>/documents", methods=["DELETE"]) # noqa: F821
@token_required
def delete(tenant_id, dataset_id):
"""
Delete documents from a dataset.
---
tags:
- Documents
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: body
name: body
description: Document deletion parameters.
required: true
schema:
type: object
properties:
ids:
type: array
items:
type: string
description: List of document IDs to delete.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Documents deleted successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}. ")
req = request.json
if not req:
doc_ids = None
else:
doc_ids = req.get("ids")
if not doc_ids:
doc_list = []
docs = DocumentService.query(kb_id=dataset_id)
for doc in docs:
doc_list.append(doc.id)
else:
doc_list = doc_ids
root_folder = FileService.get_root_folder(tenant_id)
pf_id = root_folder["id"]
FileService.init_knowledgebase_docs(pf_id, tenant_id)
errors = ""
for doc_id in doc_list:
try:
e, doc = DocumentService.get_by_id(doc_id)
if not e:
return get_error_data_result(message="Document not found!")
tenant_id = DocumentService.get_tenant_id(doc_id)
if not tenant_id:
return get_error_data_result(message="Tenant not found!")
b, n = File2DocumentService.get_storage_address(doc_id=doc_id)
if not DocumentService.remove_document(doc, tenant_id):
return get_error_data_result(
message="Database error (Document removal)!"
)
f2d = File2DocumentService.get_by_document_id(doc_id)
FileService.filter_delete(
[
File.source_type == FileSource.KNOWLEDGEBASE,
File.id == f2d[0].file_id,
]
)
File2DocumentService.delete_by_document_id(doc_id)
STORAGE_IMPL.rm(b, n)
except Exception as e:
errors += str(e)
if errors:
return get_result(message=errors, code=settings.RetCode.SERVER_ERROR)
return get_result()
@manager.route("/datasets/<dataset_id>/chunks", methods=["POST"]) # noqa: F821
@token_required
def parse(tenant_id, dataset_id):
"""
Start parsing documents into chunks.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: body
name: body
description: Parsing parameters.
required: true
schema:
type: object
properties:
document_ids:
type: array
items:
type: string
description: List of document IDs to parse.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Parsing started successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if doc[0].progress != 0.0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 100"
)
info = {"run": "1", "progress": 0}
info["progress_msg"] = ""
info["chunk_num"] = 0
info["token_num"] = 0
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": id}, search.index_name(tenant_id), dataset_id)
TaskService.filter_delete([Task.doc_id == id])
e, doc = DocumentService.get_by_id(id)
doc = doc.to_dict()
doc["tenant_id"] = tenant_id
bucket, name = File2DocumentService.get_storage_address(doc_id=doc["id"])
queue_tasks(doc, bucket, name)
return get_result()
@manager.route("/datasets/<dataset_id>/chunks", methods=["DELETE"]) # noqa: F821
@token_required
def stop_parsing(tenant_id, dataset_id):
"""
Stop parsing documents into chunks.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: body
name: body
description: Stop parsing parameters.
required: true
schema:
type: object
properties:
document_ids:
type: array
items:
type: string
description: List of document IDs to stop parsing.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Parsing stopped successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
if not req.get("document_ids"):
return get_error_data_result("`document_ids` is required")
for id in req["document_ids"]:
doc = DocumentService.query(id=id, kb_id=dataset_id)
if not doc:
return get_error_data_result(message=f"You don't own the document {id}.")
if int(doc[0].progress) == 1 or int(doc[0].progress) == 0:
return get_error_data_result(
"Can't stop parsing document with progress at 0 or 1"
)
info = {"run": "2", "progress": 0, "chunk_num": 0}
DocumentService.update_by_id(id, info)
settings.docStoreConn.delete({"doc_id": doc.id}, search.index_name(tenant_id), dataset_id)
return get_result()
@manager.route("/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["GET"]) # noqa: F821
@token_required
def list_chunks(tenant_id, dataset_id, document_id):
"""
List chunks of a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: query
name: page
type: integer
required: false
default: 1
description: Page number.
- in: query
name: page_size
type: integer
required: false
default: 30
description: Number of items per page.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: List of chunks.
schema:
type: object
properties:
total:
type: integer
description: Total number of chunks.
chunks:
type: array
items:
type: object
properties:
id:
type: string
description: Chunk ID.
content:
type: string
description: Chunk content.
document_id:
type: string
description: ID of the document.
important_keywords:
type: array
items:
type: string
description: Important keywords.
image_id:
type: string
description: Image ID associated with the chunk.
doc:
type: object
description: Document details.
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(
message=f"You don't own the document {document_id}."
)
doc = doc[0]
req = request.args
doc_id = document_id
page = int(req.get("page", 1))
size = int(req.get("page_size", 30))
question = req.get("keywords", "")
query = {
"doc_ids": [doc_id],
"page": page,
"size": size,
"question": question,
"sort": True,
}
key_mapping = {
"chunk_num": "chunk_count",
"kb_id": "dataset_id",
"token_num": "token_count",
"parser_id": "chunk_method",
}
run_mapping = {
"0": "UNSTART",
"1": "RUNNING",
"2": "CANCEL",
"3": "DONE",
"4": "FAIL",
}
doc = doc.to_dict()
renamed_doc = {}
for key, value in doc.items():
new_key = key_mapping.get(key, key)
renamed_doc[new_key] = value
if key == "run":
renamed_doc["run"] = run_mapping.get(str(value))
res = {"total": 0, "chunks": [], "doc": renamed_doc}
if req.get("id"):
chunk = settings.docStoreConn.get(req.get("id"), search.index_name(tenant_id), [dataset_id])
k = []
for n in chunk.keys():
if re.search(r"(_vec$|_sm_|_tks|_ltks)", n):
k.append(n)
for n in k:
del chunk[n]
if not chunk:
return get_error_data_result(f"Chunk `{req.get('id')}` not found.")
res['total'] = 1
final_chunk = {
"id":chunk.get("id",chunk.get("chunk_id")),
"content":chunk["content_with_weight"],
"document_id":chunk.get("doc_id",chunk.get("document_id")),
"docnm_kwd":chunk["docnm_kwd"],
"important_keywords":chunk.get("important_kwd",[]),
"questions":chunk.get("question_kwd",[]),
"dataset_id":chunk.get("kb_id",chunk.get("dataset_id")),
"image_id":chunk["img_id"],
"available":bool(chunk.get("available_int",1)),
"positions":chunk.get("position_int",[]),
}
res["chunks"].append(final_chunk)
_ = Chunk(**final_chunk)
elif settings.docStoreConn.indexExist(search.index_name(tenant_id), dataset_id):
sres = settings.retrievaler.search(query, search.index_name(tenant_id), [dataset_id], emb_mdl=None,
highlight=True)
res["total"] = sres.total
for id in sres.ids:
d = {
"id": id,
"content": (
rmSpace(sres.highlight[id])
if question and id in sres.highlight
else sres.field[id].get("content_with_weight", "")
),
"document_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
"important_keywords": sres.field[id].get("important_kwd", []),
"questions": sres.field[id].get("question_kwd", []),
"dataset_id": sres.field[id].get("kb_id", sres.field[id].get("dataset_id")),
"image_id": sres.field[id].get("img_id", ""),
"available": bool(sres.field[id].get("available_int", 1)),
"positions": sres.field[id].get("position_int",[]),
}
res["chunks"].append(d)
_ = Chunk(**d) # validate the chunk
return get_result(data=res)
@manager.route( # noqa: F821
"/datasets/<dataset_id>/documents/<document_id>/chunks", methods=["POST"]
)
@token_required
def add_chunk(tenant_id, dataset_id, document_id):
"""
Add a chunk to a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: body
name: body
description: Chunk data.
required: true
schema:
type: object
properties:
content:
type: string
required: true
description: Content of the chunk.
important_keywords:
type: array
items:
type: string
description: Important keywords.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Chunk added successfully.
schema:
type: object
properties:
chunk:
type: object
properties:
id:
type: string
description: Chunk ID.
content:
type: string
description: Chunk content.
document_id:
type: string
description: ID of the document.
important_keywords:
type: array
items:
type: string
description: Important keywords.
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(
message=f"You don't own the document {document_id}."
)
doc = doc[0]
req = request.json
if not req.get("content"):
return get_error_data_result(message="`content` is required")
if "important_keywords" in req:
if not isinstance(req["important_keywords"], list):
return get_error_data_result(
"`important_keywords` is required to be a list"
)
if "questions" in req:
if not isinstance(req["questions"], list):
return get_error_data_result(
"`questions` is required to be a list"
)
chunk_id = xxhash.xxh64((req["content"] + document_id).encode("utf-8")).hexdigest()
d = {
"id": chunk_id,
"content_ltks": rag_tokenizer.tokenize(req["content"]),
"content_with_weight": req["content"],
}
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(
" ".join(req.get("important_keywords", []))
)
d["question_kwd"] = req.get("questions", [])
d["question_tks"] = rag_tokenizer.tokenize(
"\n".join(req.get("questions", []))
)
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
d["kb_id"] = dataset_id
d["docnm_kwd"] = doc.name
d["doc_id"] = document_id
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id
)
v, c = embd_mdl.encode([doc.name, req["content"] if not d["question_kwd"] else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.insert([d], search.index_name(tenant_id), dataset_id)
DocumentService.increment_chunk_num(doc.id, doc.kb_id, c, 1, 0)
# rename keys
key_mapping = {
"id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"question_kwd": "questions",
"kb_id": "dataset_id",
"create_timestamp_flt": "create_timestamp",
"create_time": "create_time",
"document_keyword": "document",
}
renamed_chunk = {}
for key, value in d.items():
if key in key_mapping:
new_key = key_mapping.get(key, key)
renamed_chunk[new_key] = value
_ = Chunk(**renamed_chunk) # validate the chunk
return get_result(data={"chunk": renamed_chunk})
# return get_result(data={"chunk_id": chunk_id})
@manager.route( # noqa: F821
"datasets/<dataset_id>/documents/<document_id>/chunks", methods=["DELETE"]
)
@token_required
def rm_chunk(tenant_id, dataset_id, document_id):
"""
Remove chunks from a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: body
name: body
description: Chunk removal parameters.
required: true
schema:
type: object
properties:
chunk_ids:
type: array
items:
type: string
description: List of chunk IDs to remove.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Chunks removed successfully.
schema:
type: object
"""
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
req = request.json
condition = {"doc_id": document_id}
if "chunk_ids" in req:
condition["id"] = req["chunk_ids"]
chunk_number = settings.docStoreConn.delete(condition, search.index_name(tenant_id), dataset_id)
if chunk_number != 0:
DocumentService.decrement_chunk_num(document_id, dataset_id, 1, chunk_number, 0)
if "chunk_ids" in req and chunk_number != len(req["chunk_ids"]):
return get_error_data_result(message=f"rm_chunk deleted chunks {chunk_number}, expect {len(req['chunk_ids'])}")
return get_result(message=f"deleted {chunk_number} chunks")
@manager.route( # noqa: F821
"/datasets/<dataset_id>/documents/<document_id>/chunks/<chunk_id>", methods=["PUT"]
)
@token_required
def update_chunk(tenant_id, dataset_id, document_id, chunk_id):
"""
Update a chunk within a document.
---
tags:
- Chunks
security:
- ApiKeyAuth: []
parameters:
- in: path
name: dataset_id
type: string
required: true
description: ID of the dataset.
- in: path
name: document_id
type: string
required: true
description: ID of the document.
- in: path
name: chunk_id
type: string
required: true
description: ID of the chunk to update.
- in: body
name: body
description: Chunk update parameters.
required: true
schema:
type: object
properties:
content:
type: string
description: Updated content of the chunk.
important_keywords:
type: array
items:
type: string
description: Updated important keywords.
available:
type: boolean
description: Availability status of the chunk.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Chunk updated successfully.
schema:
type: object
"""
chunk = settings.docStoreConn.get(chunk_id, search.index_name(tenant_id), [dataset_id])
if chunk is None:
return get_error_data_result(f"Can't find this chunk {chunk_id}")
if not KnowledgebaseService.accessible(kb_id=dataset_id, user_id=tenant_id):
return get_error_data_result(message=f"You don't own the dataset {dataset_id}.")
doc = DocumentService.query(id=document_id, kb_id=dataset_id)
if not doc:
return get_error_data_result(
message=f"You don't own the document {document_id}."
)
doc = doc[0]
req = request.json
if "content" in req:
content = req["content"]
else:
content = chunk.get("content_with_weight", "")
d = {"id": chunk_id, "content_with_weight": content}
d["content_ltks"] = rag_tokenizer.tokenize(d["content_with_weight"])
d["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(d["content_ltks"])
if "important_keywords" in req:
if not isinstance(req["important_keywords"], list):
return get_error_data_result("`important_keywords` should be a list")
d["important_kwd"] = req.get("important_keywords", [])
d["important_tks"] = rag_tokenizer.tokenize(" ".join(req["important_keywords"]))
if "questions" in req:
if not isinstance(req["questions"], list):
return get_error_data_result("`questions` should be a list")
d["question_kwd"] = req.get("questions")
d["question_tks"] = rag_tokenizer.tokenize("\n".join(req["questions"]))
if "available" in req:
d["available_int"] = int(req["available"])
embd_id = DocumentService.get_embd_id(document_id)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id
)
if doc.parser_id == ParserType.QA:
arr = [t for t in re.split(r"[\n\t]", d["content_with_weight"]) if len(t) > 1]
if len(arr) != 2:
return get_error_data_result(
message="Q&A must be separated by TAB/ENTER key."
)
q, a = rmPrefix(arr[0]), rmPrefix(arr[1])
d = beAdoc(
d, arr[0], arr[1], not any([rag_tokenizer.is_chinese(t) for t in q + a])
)
v, c = embd_mdl.encode([doc.name, d["content_with_weight"] if not d.get("question_kwd") else "\n".join(d["question_kwd"])])
v = 0.1 * v[0] + 0.9 * v[1] if doc.parser_id != ParserType.QA else v[1]
d["q_%d_vec" % len(v)] = v.tolist()
settings.docStoreConn.update({"id": chunk_id}, d, search.index_name(tenant_id), dataset_id)
return get_result()
@manager.route("/retrieval", methods=["POST"]) # noqa: F821
@token_required
def retrieval_test(tenant_id):
"""
Retrieve chunks based on a query.
---
tags:
- Retrieval
security:
- ApiKeyAuth: []
parameters:
- in: body
name: body
description: Retrieval parameters.
required: true
schema:
type: object
properties:
dataset_ids:
type: array
items:
type: string
required: true
description: List of dataset IDs to search in.
question:
type: string
required: true
description: Query string.
document_ids:
type: array
items:
type: string
description: List of document IDs to filter.
similarity_threshold:
type: number
format: float
description: Similarity threshold.
vector_similarity_weight:
type: number
format: float
description: Vector similarity weight.
top_k:
type: integer
description: Maximum number of chunks to return.
highlight:
type: boolean
description: Whether to highlight matched content.
- in: header
name: Authorization
type: string
required: true
description: Bearer token for authentication.
responses:
200:
description: Retrieval results.
schema:
type: object
properties:
chunks:
type: array
items:
type: object
properties:
id:
type: string
description: Chunk ID.
content:
type: string
description: Chunk content.
document_id:
type: string
description: ID of the document.
dataset_id:
type: string
description: ID of the dataset.
similarity:
type: number
format: float
description: Similarity score.
"""
req = request.json
if not req.get("dataset_ids"):
return get_error_data_result("`dataset_ids` is required.")
kb_ids = req["dataset_ids"]
if not isinstance(kb_ids, list):
return get_error_data_result("`dataset_ids` should be a list")
kbs = KnowledgebaseService.get_by_ids(kb_ids)
for id in kb_ids:
if not KnowledgebaseService.accessible(kb_id=id, user_id=tenant_id):
return get_error_data_result(f"You don't own the dataset {id}.")
embd_nms = list(set([kb.embd_id for kb in kbs]))
if len(embd_nms) != 1:
return get_result(
message='Datasets use different embedding models."',
code=settings.RetCode.AUTHENTICATION_ERROR,
)
if "question" not in req:
return get_error_data_result("`question` is required.")
page = int(req.get("page", 1))
size = int(req.get("page_size", 30))
question = req["question"]
doc_ids = req.get("document_ids", [])
if not isinstance(doc_ids, list):
return get_error_data_result("`documents` should be a list")
doc_ids_list = KnowledgebaseService.list_documents_by_ids(kb_ids)
for doc_id in doc_ids:
if doc_id not in doc_ids_list:
return get_error_data_result(
f"The datasets don't own the document {doc_id}"
)
similarity_threshold = float(req.get("similarity_threshold", 0.2))
vector_similarity_weight = float(req.get("vector_similarity_weight", 0.3))
top = int(req.get("top_k", 1024))
if req.get("highlight") == "False" or req.get("highlight") == "false":
highlight = False
else:
highlight = True
try:
e, kb = KnowledgebaseService.get_by_id(kb_ids[0])
if not e:
return get_error_data_result(message="Dataset not found!")
embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id)
rerank_mdl = None
if req.get("rerank_id"):
rerank_mdl = LLMBundle(kb.tenant_id, LLMType.RERANK, llm_name=req["rerank_id"])
if req.get("keyword", False):
chat_mdl = LLMBundle(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
retr = settings.retrievaler if kb.parser_id != ParserType.KG else settings.kg_retrievaler
ranks = retr.retrieval(
question,
embd_mdl,
kb.tenant_id,
kb_ids,
page,
size,
similarity_threshold,
vector_similarity_weight,
top,
doc_ids,
rerank_mdl=rerank_mdl,
highlight=highlight,
rank_feature=label_question(question, kbs)
)
for c in ranks["chunks"]:
c.pop("vector", None)
##rename keys
renamed_chunks = []
for chunk in ranks["chunks"]:
key_mapping = {
"chunk_id": "id",
"content_with_weight": "content",
"doc_id": "document_id",
"important_kwd": "important_keywords",
"question_kwd": "questions",
"docnm_kwd": "document_keyword",
"kb_id":"dataset_id"
}
rename_chunk = {}
for key, value in chunk.items():
new_key = key_mapping.get(key, key)
rename_chunk[new_key] = value
renamed_chunks.append(rename_chunk)
ranks["chunks"] = renamed_chunks
return get_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_result(
message="No chunk found! Check the chunk status please!",
code=settings.RetCode.DATA_ERROR,
)
return server_error_response(e)
|