File size: 35,887 Bytes
d607735
 
e9c1552
 
e587fd6
 
d607735
4c39067
d607735
 
e587fd6
 
4c39067
d607735
 
 
 
 
 
 
 
 
 
4c39067
d607735
 
 
 
4c39067
d607735
 
 
811d178
d607735
 
 
 
 
 
 
 
 
 
 
811d178
d607735
2e482fd
d607735
811d178
d607735
4c39067
d607735
811d178
d607735
4c39067
d607735
4c39067
 
d607735
4c39067
d607735
e587fd6
d607735
4c39067
d607735
e587fd6
 
 
 
 
 
 
 
 
 
 
 
 
 
d607735
e9c1552
d607735
e9c1552
d607735
e9c1552
 
e587fd6
e9c1552
d607735
 
e9c1552
 
 
 
d607735
 
 
 
 
e9c1552
e587fd6
d607735
 
 
 
4c39067
d607735
 
e9c1552
d607735
 
e587fd6
e9c1552
 
811d178
e587fd6
2e482fd
e587fd6
2e482fd
 
d607735
e9c1552
 
d607735
 
 
82f39fc
e587fd6
d607735
 
 
 
4c39067
d607735
 
 
 
 
 
2e482fd
 
 
f6252d5
d607735
 
4c39067
d607735
 
 
811d178
d607735
e587fd6
d607735
811d178
d607735
e587fd6
d607735
e587fd6
d607735
e587fd6
 
 
 
d607735
811d178
d607735
4c39067
d607735
811d178
d607735
e587fd6
d607735
811d178
d607735
e587fd6
d607735
 
 
e587fd6
e9c1552
82f39fc
811d178
d607735
4c39067
811d178
e9c1552
e587fd6
 
d607735
 
4c39067
d607735
e9c1552
 
 
 
 
 
811d178
4c39067
d607735
 
2e482fd
d607735
 
e587fd6
e9c1552
 
 
 
 
e587fd6
 
4c39067
e587fd6
e9c1552
e587fd6
e9c1552
 
 
 
 
 
 
 
 
 
 
 
 
d607735
 
e9c1552
 
d607735
 
 
 
 
 
e587fd6
 
4c39067
d607735
ad355eb
d607735
 
 
4c39067
d607735
 
4c39067
 
ad355eb
d607735
 
f6252d5
d607735
 
4c39067
ad355eb
d607735
 
e587fd6
ad355eb
 
d607735
4c39067
 
d607735
3d9274d
ad355eb
 
 
3d9274d
 
 
ad355eb
4c39067
 
3d9274d
ad355eb
3d9274d
d607735
3d9274d
 
 
 
 
 
ad355eb
 
3d9274d
 
4c39067
ad355eb
e587fd6
 
4c39067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d607735
 
 
ad355eb
 
d607735
 
 
3d9274d
 
 
e587fd6
 
 
ad355eb
3d9274d
4c39067
3d9274d
 
d607735
 
3d9274d
d607735
 
3d9274d
 
 
e587fd6
4c39067
3d9274d
 
4c39067
3d9274d
 
 
 
 
 
4c39067
 
 
 
3d9274d
 
 
 
 
 
 
 
 
 
f6252d5
d607735
 
4c39067
 
d607735
 
e587fd6
d607735
4c39067
d607735
e587fd6
3d9274d
d36c193
3d9274d
e587fd6
3d9274d
e587fd6
3d9274d
e587fd6
3d9274d
e587fd6
ad355eb
e587fd6
d607735
e587fd6
4c39067
e587fd6
4c39067
d607735
e587fd6
ad355eb
4c39067
ad355eb
d607735
 
116c571
 
d607735
116c571
 
e587fd6
 
 
 
 
 
 
920f3c8
e587fd6
 
 
d36c193
e587fd6
 
 
920f3c8
 
 
 
 
 
 
 
d607735
 
 
 
 
 
d36c193
 
d607735
 
e587fd6
 
 
 
d607735
 
 
 
 
 
 
f6252d5
d607735
ad355eb
e587fd6
 
 
 
 
 
 
116c571
d607735
 
ad355eb
 
d607735
 
 
 
 
 
e587fd6
 
 
 
d607735
 
 
 
4c39067
d607735
 
f6252d5
d607735
 
d36c193
 
d607735
 
e587fd6
ad355eb
116c571
d607735
 
ad355eb
920f3c8
ad355eb
d607735
 
 
 
e587fd6
 
d607735
3d9274d
 
 
d607735
e587fd6
 
 
3d9274d
 
e587fd6
 
d607735
 
ad355eb
 
4c39067
 
 
 
 
 
d36c193
 
4c39067
 
e587fd6
4c39067
e587fd6
4c39067
 
 
 
 
 
 
 
 
e587fd6
 
4c39067
 
 
 
 
e587fd6
 
 
4c39067
 
e587fd6
 
 
 
4c39067
 
 
 
d36c193
ad355eb
d607735
d36c193
d607735
ad355eb
d36c193
e587fd6
d607735
 
d36c193
d607735
d36c193
d607735
d36c193
116c571
d36c193
ad355eb
d607735
116c571
d36c193
e587fd6
d607735
d36c193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d9274d
116c571
3d9274d
 
d607735
e587fd6
d36c193
 
 
 
 
3d9274d
ad355eb
d36c193
 
 
d607735
 
d36c193
d607735
 
d36c193
 
d607735
 
d36c193
 
 
ad355eb
d36c193
 
 
 
 
ad355eb
d36c193
ad355eb
d36c193
 
 
d607735
 
 
d36c193
 
d607735
 
 
 
 
 
d36c193
 
 
 
 
 
d607735
 
 
 
d36c193
d607735
 
f6252d5
d607735
116c571
e587fd6
 
3d9274d
ad355eb
e587fd6
ad355eb
e587fd6
d607735
 
 
ad355eb
 
d607735
 
 
 
 
 
d36c193
 
 
 
3d9274d
d607735
3d9274d
d607735
 
 
 
3d9274d
d607735
 
3d9274d
d607735
4c39067
e587fd6
4c39067
3d9274d
 
4c39067
3d9274d
e587fd6
 
4c39067
d36c193
e587fd6
4c39067
 
d607735
 
 
ad355eb
 
d607735
 
 
 
 
 
4c39067
 
116c571
 
3d9274d
d607735
116c571
d607735
 
 
 
4c39067
d607735
 
f6252d5
d607735
 
d36c193
 
d607735
 
4c39067
d607735
 
 
d36c193
d607735
4c39067
d607735
4c39067
d607735
4c39067
d607735
 
 
e587fd6
d607735
 
 
d36c193
d607735
 
 
 
 
 
 
4c39067
d607735
 
 
4c39067
 
d36c193
d607735
d36c193
3d9274d
d36c193
4c39067
 
 
 
d36c193
3d9274d
d36c193
3d9274d
 
4c39067
d607735
 
4c39067
 
d607735
 
 
 
 
 
4c39067
d36c193
 
d607735
3d9274d
d36c193
 
3d9274d
d36c193
4c39067
d36c193
3d9274d
d607735
 
 
 
 
 
 
 
 
ad355eb
d607735
 
e587fd6
 
f6252d5
e9c1552
d607735
40a1db3
4c39067
 
 
40a1db3
 
 
d607735
 
f6252d5
 
4c39067
d607735
116c571
 
d36c193
4c39067
 
 
d36c193
4c39067
 
 
 
 
 
 
d36c193
4c39067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d36c193
4c39067
 
 
 
 
 
 
 
 
f6252d5
 
4c39067
d607735
 
f6252d5
d607735
4c39067
 
 
 
 
d607735
 
 
 
 
d36c193
 
 
 
 
 
d607735
 
 
 
d36c193
d607735
 
40a1db3
d607735
 
e587fd6
f6252d5
e9c1552
 
e587fd6
 
 
e9c1552
 
 
e587fd6
f6252d5
 
 
e9c1552
f6252d5
 
e9c1552
f6252d5
 
 
 
 
 
4c39067
f6252d5
 
 
 
 
 
e9c1552
d607735
 
e9c1552
 
d607735
 
 
 
 
 
d36c193
 
 
f6252d5
d607735
 
 
 
d36c193
d607735
 
f6252d5
d607735
40a1db3
e587fd6
 
e9c1552
40a1db3
e587fd6
40a1db3
e587fd6
d607735
 
 
e9c1552
 
d607735
 
 
 
 
 
d36c193
 
d607735
 
 
 
d36c193
d607735
 
40a1db3
 
 
 
 
 
 
f6252d5
d607735
 
116c571
 
d607735
 
d36c193
d607735
e587fd6
d607735
d36c193
d607735
e587fd6
d607735
d36c193
d607735
d36c193
d607735
d36c193
 
 
 
d607735
4c39067
d607735
d36c193
d607735
d36c193
d607735
d36c193
d607735
d36c193
e9c1552
d607735
 
f6252d5
e9c1552
d607735
 
 
 
 
 
e587fd6
 
e9c1552
d607735
 
 
 
 
d36c193
d607735
 
e587fd6
 
d607735
 
 
cd7d2b9
d607735
 
f6252d5
d607735
f6252d5
d607735
d36c193
d607735
f6252d5
d607735
f6252d5
d607735
f6252d5
 
 
 
 
 
d607735
 
 
 
 
 
d36c193
 
f6252d5
 
d607735
 
d36c193
 
cd7d2b9
d607735
 
f6252d5
d607735
 
e587fd6
f6252d5
 
 
 
 
e587fd6
 
f6252d5
 
d607735
 
f6252d5
 
d607735
 
 
 
 
 
d36c193
 
f6252d5
 
 
d607735
 
 
 
 
 
 
cd7d2b9
 
 
 
 
 
 
f6252d5
d607735
 
f6252d5
d607735
f6252d5
d607735
d36c193
d607735
e587fd6
d607735
d36c193
d607735
e587fd6
cd7d2b9
d36c193
cd7d2b9
e587fd6
4c39067
e587fd6
4c39067
cd7d2b9
d36c193
cd7d2b9
4c39067
cd7d2b9
d36c193
cd7d2b9
f6252d5
cd7d2b9
d36c193
cd7d2b9
d36c193
cd7d2b9
f6252d5
cd7d2b9
f6252d5
 
cd7d2b9
f6252d5
 
 
 
 
e587fd6
 
f6252d5
 
 
 
cd7d2b9
d607735
 
f6252d5
d607735
 
f6252d5
d607735
 
e587fd6
f6252d5
 
 
e587fd6
f6252d5
e587fd6
f6252d5
d607735
 
f6252d5
 
d607735
 
 
 
 
 
d36c193
 
f6252d5
 
d36c193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6252d5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
# DRAFT Python API Reference

**THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.**

---

:::tip NOTE
Dataset Management
:::

---

## Create dataset

```python
RAGFlow.create_dataset(
    name: str,
    avatar: str = "",
    description: str = "",
    language: str = "English",
    permission: str = "me", 
    document_count: int = 0,
    chunk_count: int = 0,
    chunk_method: str = "naive",
    parser_config: DataSet.ParserConfig = None
) -> DataSet
```

Creates a dataset.

### Parameters

#### name: `str`, *Required*

The unique name of the dataset to create. It must adhere to the following requirements:

- Permitted characters include:
  - English letters (a-z, A-Z)
  - Digits (0-9)
  - "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.

#### avatar: `str`

Base64 encoding of the avatar. Defaults to `""`

#### description: `str`

A brief description of the dataset to create. Defaults to `""`.

#### language: `str`

The language setting of the dataset to create. Available options:

- `"English"` (Default)
- `"Chinese"`

#### permission

Specifies who can access the dataset to create. You can set it only to `"me"` for now.

#### chunk_method, `str`

The chunking method of the dataset to create. Available options:

- `"naive"`: General (default)
- `"manual`: Manual
- `"qa"`: Q&A
- `"table"`: Table
- `"paper"`: Paper
- `"book"`: Book
- `"laws"`: Laws
- `"presentation"`: Presentation
- `"picture"`: Picture
- `"one"`:One
- `"knowledge_graph"`: Knowledge Graph
- `"email"`: Email

#### parser_config

The parser configuration of the dataset. A `ParserConfig` object contains the following attributes:

- `chunk_token_count`: Defaults to `128`.
- `layout_recognize`: Defaults to `True`.
- `delimiter`: Defaults to `"\n!?。;!?"`.
- `task_page_size`: Defaults to `12`.

### Returns

- Success: A `dataset` object.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
```

---

## Delete datasets

```python
RAGFlow.delete_datasets(ids: list[str] = None)
```

Deletes specified datasets or all datasets in the system.

### Parameters

#### ids: `list[str]`

The IDs of the datasets to delete. Defaults to `None`. If not specified, all datasets in the system will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
rag_object.delete_datasets(ids=["id_1","id_2"])
```

---

## List datasets

```python
RAGFlow.list_datasets(
    page: int = 1, 
    page_size: int = 1024, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[DataSet]
```

Retrieves a list of datasets.

### Parameters

#### page: `int`

Specifies the page on which the datasets will be displayed. Defaults to `1`.

#### page_size: `int`

The number of datasets on each page. Defaults to `1024`.

#### orderby: `str`

The field by which datasets should be sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved datasets should be sorted in descending order. Defaults to `True`.

#### id: `str`

The ID of the dataset to retrieve. Defaults to `None`.

#### name: `str`

The name of the dataset to retrieve. Defaults to `None`.

### Returns

- Success: A list of `DataSet` objects.
- Failure: `Exception`.

### Examples

#### List all datasets

```python
for dataset in rag_object.list_datasets():
    print(dataset)
```

#### Retrieve a dataset by ID

```python
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
```

---

## Update dataset

```python
DataSet.update(update_message: dict)
```

Updates configurations for the current dataset.

### Parameters

#### update_message: `dict[str, str|int]`, *Required*

A dictionary representing the attributes to update, with the following keys:

- `"name"`: `str` The name of the dataset to update.
- `"embedding_model"`: `str` The embedding model name to update.
  - Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
- `"chunk_method"`: `str` The chunking method for the dataset. Available options:
  - `"naive"`: General
  - `"manual`: Manual
  - `"qa"`: Q&A
  - `"table"`: Table
  - `"paper"`: Paper
  - `"book"`: Book
  - `"laws"`: Laws
  - `"presentation"`: Presentation
  - `"picture"`: Picture
  - `"one"`:One
  - `"knowledge_graph"`: Knowledge Graph
  - `"email"`: Email

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
```

---

:::tip API GROUPING
File Management within Dataset
:::

---

## Upload documents

```python
DataSet.upload_documents(document_list: list[dict])
```

Uploads documents to the current dataset.

### Parameters

#### document_list: `list[dict]`, *Required*

A list of dictionaries representing the documents to upload, each containing the following keys:

- `"display_name"`: (Optional) The file name to display in the dataset.  
- `"blob"`: (Optional) The binary content of the file to upload.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
```

---

## Update document

```python
Document.update(update_message:dict)
```

Updates configurations for the current document.

### Parameters

#### update_message: `dict[str, str|dict[]]`, *Required*

A dictionary representing the attributes to update, with the following keys:

- `"name"`: `str` The name of the document to update.
- `"parser_config"`: `dict[str, Any]` The parsing configuration for the document:
  - `"chunk_token_count"`: Defaults to `128`.
  - `"layout_recognize"`: Defaults to `True`.
  - `"delimiter"`: Defaults to `'\n!?。;!?'`.
  - `"task_page_size"`: Defaults to `12`.
- `"chunk_method"`: `str` The parsing method to apply to the document.
  - `"naive"`: General
  - `"manual`: Manual
  - `"qa"`: Q&A
  - `"table"`: Table
  - `"paper"`: Paper
  - `"book"`: Book
  - `"laws"`: Laws
  - `"presentation"`: Presentation
  - `"picture"`: Picture
  - `"one"`: One
  - `"knowledge_graph"`: Knowledge Graph
  - `"email"`: Email

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id='id')
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
```

---

## Download document

```python
Document.download() -> bytes
```

Downloads the current document.

### Returns

The downloaded document in bytes.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
```

---

## List documents

```python
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]
```

Retrieves a list of documents from the current dataset.

### Parameters

#### id: `str`

The ID of the document to retrieve. Defaults to `None`.

#### keywords: `str`

The keywords used to match document titles. Defaults to `None`.

#### offset: `int`

The starting index for the documents to retrieve. Typically used in confunction with `limit`. Defaults to `0`.

#### limit: `int`

The maximum number of documents to retrieve. Defaults to `1024`. A value of `-1` indicates that all documents should be returned.

#### orderby: `str`

The field by which documents should be sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.

### Returns

- Success: A list of `Document` objects.
- Failure: `Exception`.

A `Document` object contains the following attributes:

- `id`: The document ID. Defaults to `""`.
- `name`: The document name. Defaults to `""`.
- `thumbnail`: The thumbnail image of the document. Defaults to `None`.
- `knowledgebase_id`: The dataset ID associated with the document. Defaults to `None`.
- `chunk_method` The chunk method name. Defaults to `""`. ?????naive??????
- `parser_config`: `ParserConfig` Configuration object for the parser. Defaults to `{"pages": [[1, 1000000]]}`.
- `source_type`: The source type of the document. Defaults to `"local"`.
- `type`: Type or category of the document. Defaults to `""`. Reserved for future use.
- `created_by`: `str` The creator of the document. Defaults to `""`.
- `size`: `int` The document size in bytes. Defaults to `0`.
- `token_count`: `int` The number of tokens in the document. Defaults to `0`.
- `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
- `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
- `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
- `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
- `process_duation`: `float` Duration of the processing in seconds. Defaults to `0.0`.
- `run`: `str` The document's processing status:
  - `"0"`: UNSTART (default)
  - `"1"`: RUNNING
  - `"2"`: CANCEL
  - `"3"`: DONE
  - `"4"`: FAIL
- `status`: `str` Reserved for future use.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")

filename1 = "~/ragflow.txt"
blob = open(filename1 , "rb").read()
dataset.upload_documents([{"name":filename1,"blob":blob}])
for doc in dataset.list_documents(keywords="rag", offset=0, limit=12):
    print(doc)
```

---

## Delete documents

```python
DataSet.delete_documents(ids: list[str] = None)
```

Deletes documents by ID.

### Parameters

#### ids: `list[list]`

The IDs of the documents to delete. Defaults to `None`. If not specified, all documents in the dataset will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["id_1","id_2"])
```

---

## Parse documents

```python
DataSet.async_parse_documents(document_ids:list[str]) -> None
```

Parses documents in the current dataset.

### Parameters

#### document_ids: `list[str]`, *Required*

The IDs of the documents to parse.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
    {'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
    {'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
    {'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
    ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
```

---

## Stop parsing documents

```python
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
```

Stops parsing specified documents.

### Parameters

#### document_ids: `list[str]`, *Required*

The IDs of the documents for which parsing should be stopped.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
    {'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
    {'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
    {'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
    ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
dataset.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled.")
```

---

## Add chunk

```python
Document.add_chunk(content:str) -> Chunk ?????????????????????
```

Adds a chunk to the current document.

### Parameters

#### content: `str`, *Required*

The text content of the chunk.

#### important_keywords: `list[str]`  ??????????????????????

The key terms or phrases to tag with the chunk.

### Returns

- Success: A `Chunk` object.
- Failure: `Exception`.

A `Chunk` object contains the following attributes:

- `id`: `str` 
- `content`: `str` Content of the chunk.
- `important_keywords`: `list[str]` A list of key terms or phrases to tag with the chunk.
- `create_time`: `str` The time when the chunk was created (added to the document).
- `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
- `knowledgebase_id`: `str` The ID of the associated dataset.
- `document_name`: `str` The name of the associated document.
- `document_id`: `str` The ID of the associated document.
- `available`: `int`???? The chunk's availability status in the dataset. Value options:
  - `0`: Unavailable
  - `1`: Available


### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
```

---

## List chunks

```python
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]
```

Retrieves a list of chunks from the current document.

### Parameters

#### keywords: `str`  
  
The keywords used to match chunk content. Defaults to `None`

#### offset: `int`

The starting index for the chunks to retrieve. Defaults to `1`??????

#### limit  

The maximum number of chunks to retrieve.  Default: `30`?????????

#### id

The ID of the chunk to retrieve. Default: `None`

### Returns

- Success: A list of `Chunk` objects.
- Failure: `Exception`.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets("123")
dataset = dataset[0]
dataset.async_parse_documents(["wdfxb5t547d"])
for chunk in doc.list_chunks(keywords="rag", offset=0, limit=12):
    print(chunk)
```

---

## Delete chunks

```python
Document.delete_chunks(chunk_ids: list[str])
```

Deletes chunks by ID.

### Parameters

#### chunk_ids: `list[str]`

The IDs of the chunks to delete. Defaults to `None`. If not specified, all chunks of the current document will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
```

---

## Update chunk

```python
Chunk.update(update_message: dict)
```

Updates content or configurations for the current chunk.

### Parameters

#### update_message: `dict[str, str|list[str]|int]` *Required*

A dictionary representing the attributes to update, with the following keys:

- `"content"`: `str` Content of the chunk.
- `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
- `"available"`: `int` The chunk's availability status in the dataset. Value options:
  - `0`: Unavailable
  - `1`: Available

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
```

---

## Retrieve chunks

```python
RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
```

???????

### Parameters

#### question: `str` *Required*

The user query or query keywords. Defaults to `""`.

#### datasets: `list[str]`, *Required*?????

The datasets to search from.

#### document: `list[str]`

The documents to search from. `None` means no limitation. Defaults to `None`.

#### offset: `int`

The starting index for the documents to retrieve. Defaults to `0`??????.

#### limit: `int`

The maximum number of chunks to retrieve. Defaults to `6`.???????????????

#### Similarity_threshold: `float`

The minimum similarity score. Defaults to `0.2`.

#### similarity_threshold_weight: `float`

The weight of vector cosine similarity. Defaults to `0.3`. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.

#### top_k: `int`

The number of chunks engaged in vector cosine computaton. Defaults to `1024`.

#### rerank_id: `str`

The ID of the rerank model. Defaults to `None`.

#### keyword: `bool`

Indicates whether keyword-based matching is enabled:

- `True`: Enabled.
- `False`: Disabled (default).

#### highlight: `bool`

Specifying whether to enable highlighting of matched terms in the results (True) or not (False).

### Returns

- Success: A list of `Chunk` objects representing the document chunks.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="ragflow")
dataset = dataset[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
doc = dataset.list_documents(name=name)
doc = doc[0]
dataset.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?", 
             datasets=[dataset.id], documents=[doc.id], 
             offset=1, limit=30, similarity_threshold=0.2, 
             vector_similarity_weight=0.3,
             top_k=1024
             ):
    print(c)
```

---

:::tip API GROUPING
Chat Assistant Management
:::

---

## Create chat assistant

```python
RAGFlow.create_chat(
    name: str, 
    avatar: str = "", 
    knowledgebases: list[str] = [], 
    llm: Chat.LLM = None, 
    prompt: Chat.Prompt = None
) -> Chat
```

Creates a chat assistant.

### Parameters

The following shows the attributes of a `Chat` object:

#### name: `str`, *Required*????????

The name of the chat assistant. Defaults to `"assistant"`.

#### avatar: `str`

Base64 encoding of the avatar. Defaults to `""`.

#### knowledgebases: `list[str]` 

The IDs of the associated datasets. Defaults to `[""]`.

#### llm: `Chat.LLM`

The llm of the created chat. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default.

An `LLM` object contains the following attributes:

- `model_name`, `str`  
  The chat model name. If it is `None`, the user's default chat model will be returned.  
- `temperature`, `float`  
  Controls the randomness of the model's predictions. A lower temperature increases the model's conficence in its responses; a higher temperature increases creativity and diversity. Defaults to `0.1`.  
- `top_p`, `float`  
  Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`  
- `presence_penalty`, `float`  
  This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
- `frequency penalty`, `float`  
  Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
- `max_token`, `int`  
  This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to `512`.

#### prompt: `Chat.Prompt`

Instructions for the LLM to follow.  A `Prompt` object contains the following attributes:

- `"similarity_threshold"`: `float` A similarity score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to `0.2`.
- `"keywords_similarity_weight"`: `float` It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to `0.7`.
- `"top_n"`: `int` Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to `8`.
- `"variables"`: `list[dict[]]` If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to `[{"key": "knowledge", "optional": True}]`
- `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
- `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
- `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
- `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
- `"prompt"`: `str` The prompt content. Defaults to `You are an intelligent assistant. Please summarize the content of the dataset to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
      Here is the knowledge base:
      {knowledge}
      The above is the knowledge base.`.

### Returns

- Success: A `Chat` object representing the chat assistant.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
    dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", knowledgebases=dataset_ids)
```

---

## Update chat assistant

```python
Chat.update(update_message: dict)
```

Updates configurations for the current chat assistant.

### Parameters

#### update_message: `dict[str, str|list[str]|dict[]]`, *Required*

A dictionary representing the attributes to update, with the following keys:

- `"name"`: `str` The name of the chat assistant to update.
- `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
- `"knowledgebases"`: `list[str]` The datasets to update.
- `"llm"`: `dict` The LLM settings:
  - `"model_name"`, `str` The chat model name.
  - `"temperature"`, `float` Controls the randomness of the model's predictions.  
  - `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.  
  - `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
  - `"frequency penalty"`, `float` Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
  - `"max_token"`, `int` This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
- `"prompt"` : Instructions for the LLM to follow.
  - `"similarity_threshold"`: `float` A score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to `0.2`.
  - `"keywords_similarity_weight"`: `float` It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to `0.7`.
  - `"top_n"`: `int` Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to `8`.
  - `"variables"`: `list[dict[]]` If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to `[{"key": "knowledge", "optional": True}]`
  - `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
  - `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
  - `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
  - `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
  - `"prompt"`: `str` The prompt content. Defaults to `You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
      Here is the knowledge base:
      {knowledge}
      The above is the knowledge base.`.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
assistant = rag_object.create_chat("Miss R", knowledgebases=datasets)
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
```

---

## Delete chat assistants

```python
RAGFlow.delete_chats(ids: list[str] = None)
```

Deletes chat assistants by ID.

### Parameters

#### ids: `list[str]`

The IDs of the chat assistants to delete. Defaults to `None`. If not specified, all chat assistants in the system will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag_object.delete_chats(ids=["id_1","id_2"])
```

---

## List chat assistants

```python
RAGFlow.list_chats(
    page: int = 1, 
    page_size: int = 1024, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[Chat]
```

Retrieves a list of chat assistants.

### Parameters

#### page: `int`

Specifies the page on which the chat assistants will be displayed. Defaults to `1`.

#### page_size: `int`

The number of chat assistants on each page. Defaults to `1024`.

#### orderby: `str`

The attribute by which the results are sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.

#### id: `str`  

The ID of the chat assistant to retrieve. Defaults to `None`.

#### name: `str`  

The name of the chat assistant to retrieve. Defaults to `None`.

### Returns

- Success: A list of `Chat` objects.
- Failure: `Exception`.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag_object.list_chats():
    print(assistant)
```

---

:::tip API GROUPING
Chat Session APIs
:::

---

## Create session

```python
Chat.create_session(name: str = "New session") -> Session
```

Creates a chat session.

### Parameters

#### name: `str`

The name of the chat session to create.

### Returns

- Success: A `Session` object containing the following attributes:
  - `id`: `str` The auto-generated unique identifier of the created session.
  - `name`: `str` The name of the created session.
  - `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
  - `chat_id`: `str` The ID of the associated chat assistant.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
```

---

## Update session

```python
Session.update(update_message: dict)
```

Updates the current session name.

### Parameters

#### update_message: `dict[str, Any]`, *Required*

A dictionary representing the attributes to update, with only one key:

- `"name"`: `str` The name of the session to update.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
```

---

## List sessions

```python
Chat.list_sessions(
    page: int = 1, 
    page_size: int = 1024, 
    orderby: str = "create_time", 
    desc: bool = True,
    id: str = None,
    name: str = None
) -> list[Session]
```

Lists sessions associated with the current chat assistant.

### Parameters

#### page: `int`

Specifies the page on which the sessions will be displayed. Defaults to `1`.

#### page_size: `int`

The number of sessions on each page. Defaults to `1024`.

#### orderby: `str`

The field by which sessions should be sorted. Available options:

- `"create_time"` (default)
- `"update_time"`

#### desc: `bool`

Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.

#### id: `str`

The ID of the chat session to retrieve. Defaults to `None`.

#### name: `str`

The name of the chat session to retrieve. Defaults to `None`.

### Returns

- Success: A list of `Session` objects associated with the current chat assistant.
- Failure: `Exception`.

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
    print(session)
```

---

## Delete sessions

```python
Chat.delete_sessions(ids:list[str] = None)
```

Deletes sessions by ID.

### Parameters

#### ids: `list[str]`

The IDs of the sessions to delete. Defaults to `None`. If not specified, all sessions associated with the current chat assistant will be deleted.

### Returns

- Success: No value is returned.
- Failure: `Exception`

### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])
```

---

## Chat

```python
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
```

Asks a question to start a conversation.

### Parameters

#### question: `str` *Required*

The question to start an AI chat.

#### stream: `str`

Indicates whether to output responses in a streaming way:

- `True`: Enable streaming.
- `False`: (Default) Disable streaming.

### Returns

- A `Message` object containing the response to the question if `stream` is set to `False`
- An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`

The following shows the attributes of a `Message` object:

#### id: `str`

The auto-generated message ID.

#### content: `str`

The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.

#### reference: `list[Chunk]`

A list of `Chunk` objects representing references to the message, each containing the following attributes:

- `id` `str`  
  The chunk ID.
- `content` `str`  
  The content of the chunk.
- `image_id` `str`  
  The ID of the snapshot of the chunk.
- `document_id` `str`  
  The ID of the referenced document.
- `document_name` `str`  
  The name of the referenced document.
- `position` `list[str]`  
  The location information of the chunk within the referenced document.
- `knowledgebase_id` `str`  
  The ID of the dataset to which the referenced document belongs.
- `similarity` `float`
  A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity.
- `vector_similarity` `float`  
  A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
- `term_similarity` `float`  
  A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.


### Examples

```python
from ragflow import RAGFlow

rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()    

print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())

while True:
    question = input("\n==================== User =====================\n> ")
    print("\n==================== Miss R =====================\n")
    
    cont = ""
    for ans in session.ask(question, stream=True):
        print(answer.content[len(cont):], end='', flush=True)
        cont = answer.content
```