File size: 35,887 Bytes
d607735 e9c1552 e587fd6 d607735 4c39067 d607735 e587fd6 4c39067 d607735 4c39067 d607735 4c39067 d607735 811d178 d607735 811d178 d607735 2e482fd d607735 811d178 d607735 4c39067 d607735 811d178 d607735 4c39067 d607735 4c39067 d607735 4c39067 d607735 e587fd6 d607735 4c39067 d607735 e587fd6 d607735 e9c1552 d607735 e9c1552 d607735 e9c1552 e587fd6 e9c1552 d607735 e9c1552 d607735 e9c1552 e587fd6 d607735 4c39067 d607735 e9c1552 d607735 e587fd6 e9c1552 811d178 e587fd6 2e482fd e587fd6 2e482fd d607735 e9c1552 d607735 82f39fc e587fd6 d607735 4c39067 d607735 2e482fd f6252d5 d607735 4c39067 d607735 811d178 d607735 e587fd6 d607735 811d178 d607735 e587fd6 d607735 e587fd6 d607735 e587fd6 d607735 811d178 d607735 4c39067 d607735 811d178 d607735 e587fd6 d607735 811d178 d607735 e587fd6 d607735 e587fd6 e9c1552 82f39fc 811d178 d607735 4c39067 811d178 e9c1552 e587fd6 d607735 4c39067 d607735 e9c1552 811d178 4c39067 d607735 2e482fd d607735 e587fd6 e9c1552 e587fd6 4c39067 e587fd6 e9c1552 e587fd6 e9c1552 d607735 e9c1552 d607735 e587fd6 4c39067 d607735 ad355eb d607735 4c39067 d607735 4c39067 ad355eb d607735 f6252d5 d607735 4c39067 ad355eb d607735 e587fd6 ad355eb d607735 4c39067 d607735 3d9274d ad355eb 3d9274d ad355eb 4c39067 3d9274d ad355eb 3d9274d d607735 3d9274d ad355eb 3d9274d 4c39067 ad355eb e587fd6 4c39067 d607735 ad355eb d607735 3d9274d e587fd6 ad355eb 3d9274d 4c39067 3d9274d d607735 3d9274d d607735 3d9274d e587fd6 4c39067 3d9274d 4c39067 3d9274d 4c39067 3d9274d f6252d5 d607735 4c39067 d607735 e587fd6 d607735 4c39067 d607735 e587fd6 3d9274d d36c193 3d9274d e587fd6 3d9274d e587fd6 3d9274d e587fd6 3d9274d e587fd6 ad355eb e587fd6 d607735 e587fd6 4c39067 e587fd6 4c39067 d607735 e587fd6 ad355eb 4c39067 ad355eb d607735 116c571 d607735 116c571 e587fd6 920f3c8 e587fd6 d36c193 e587fd6 920f3c8 d607735 d36c193 d607735 e587fd6 d607735 f6252d5 d607735 ad355eb e587fd6 116c571 d607735 ad355eb d607735 e587fd6 d607735 4c39067 d607735 f6252d5 d607735 d36c193 d607735 e587fd6 ad355eb 116c571 d607735 ad355eb 920f3c8 ad355eb d607735 e587fd6 d607735 3d9274d d607735 e587fd6 3d9274d e587fd6 d607735 ad355eb 4c39067 d36c193 4c39067 e587fd6 4c39067 e587fd6 4c39067 e587fd6 4c39067 e587fd6 4c39067 e587fd6 4c39067 d36c193 ad355eb d607735 d36c193 d607735 ad355eb d36c193 e587fd6 d607735 d36c193 d607735 d36c193 d607735 d36c193 116c571 d36c193 ad355eb d607735 116c571 d36c193 e587fd6 d607735 d36c193 3d9274d 116c571 3d9274d d607735 e587fd6 d36c193 3d9274d ad355eb d36c193 d607735 d36c193 d607735 d36c193 d607735 d36c193 ad355eb d36c193 ad355eb d36c193 ad355eb d36c193 d607735 d36c193 d607735 d36c193 d607735 d36c193 d607735 f6252d5 d607735 116c571 e587fd6 3d9274d ad355eb e587fd6 ad355eb e587fd6 d607735 ad355eb d607735 d36c193 3d9274d d607735 3d9274d d607735 3d9274d d607735 3d9274d d607735 4c39067 e587fd6 4c39067 3d9274d 4c39067 3d9274d e587fd6 4c39067 d36c193 e587fd6 4c39067 d607735 ad355eb d607735 4c39067 116c571 3d9274d d607735 116c571 d607735 4c39067 d607735 f6252d5 d607735 d36c193 d607735 4c39067 d607735 d36c193 d607735 4c39067 d607735 4c39067 d607735 4c39067 d607735 e587fd6 d607735 d36c193 d607735 4c39067 d607735 4c39067 d36c193 d607735 d36c193 3d9274d d36c193 4c39067 d36c193 3d9274d d36c193 3d9274d 4c39067 d607735 4c39067 d607735 4c39067 d36c193 d607735 3d9274d d36c193 3d9274d d36c193 4c39067 d36c193 3d9274d d607735 ad355eb d607735 e587fd6 f6252d5 e9c1552 d607735 40a1db3 4c39067 40a1db3 d607735 f6252d5 4c39067 d607735 116c571 d36c193 4c39067 d36c193 4c39067 d36c193 4c39067 d36c193 4c39067 f6252d5 4c39067 d607735 f6252d5 d607735 4c39067 d607735 d36c193 d607735 d36c193 d607735 40a1db3 d607735 e587fd6 f6252d5 e9c1552 e587fd6 e9c1552 e587fd6 f6252d5 e9c1552 f6252d5 e9c1552 f6252d5 4c39067 f6252d5 e9c1552 d607735 e9c1552 d607735 d36c193 f6252d5 d607735 d36c193 d607735 f6252d5 d607735 40a1db3 e587fd6 e9c1552 40a1db3 e587fd6 40a1db3 e587fd6 d607735 e9c1552 d607735 d36c193 d607735 d36c193 d607735 40a1db3 f6252d5 d607735 116c571 d607735 d36c193 d607735 e587fd6 d607735 d36c193 d607735 e587fd6 d607735 d36c193 d607735 d36c193 d607735 d36c193 d607735 4c39067 d607735 d36c193 d607735 d36c193 d607735 d36c193 d607735 d36c193 e9c1552 d607735 f6252d5 e9c1552 d607735 e587fd6 e9c1552 d607735 d36c193 d607735 e587fd6 d607735 cd7d2b9 d607735 f6252d5 d607735 f6252d5 d607735 d36c193 d607735 f6252d5 d607735 f6252d5 d607735 f6252d5 d607735 d36c193 f6252d5 d607735 d36c193 cd7d2b9 d607735 f6252d5 d607735 e587fd6 f6252d5 e587fd6 f6252d5 d607735 f6252d5 d607735 d36c193 f6252d5 d607735 cd7d2b9 f6252d5 d607735 f6252d5 d607735 f6252d5 d607735 d36c193 d607735 e587fd6 d607735 d36c193 d607735 e587fd6 cd7d2b9 d36c193 cd7d2b9 e587fd6 4c39067 e587fd6 4c39067 cd7d2b9 d36c193 cd7d2b9 4c39067 cd7d2b9 d36c193 cd7d2b9 f6252d5 cd7d2b9 d36c193 cd7d2b9 d36c193 cd7d2b9 f6252d5 cd7d2b9 f6252d5 cd7d2b9 f6252d5 e587fd6 f6252d5 cd7d2b9 d607735 f6252d5 d607735 f6252d5 d607735 e587fd6 f6252d5 e587fd6 f6252d5 e587fd6 f6252d5 d607735 f6252d5 d607735 d36c193 f6252d5 d36c193 f6252d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 |
# DRAFT Python API Reference
**THE API REFERENCES BELOW ARE STILL UNDER DEVELOPMENT.**
---
:::tip NOTE
Dataset Management
:::
---
## Create dataset
```python
RAGFlow.create_dataset(
name: str,
avatar: str = "",
description: str = "",
language: str = "English",
permission: str = "me",
document_count: int = 0,
chunk_count: int = 0,
chunk_method: str = "naive",
parser_config: DataSet.ParserConfig = None
) -> DataSet
```
Creates a dataset.
### Parameters
#### name: `str`, *Required*
The unique name of the dataset to create. It must adhere to the following requirements:
- Permitted characters include:
- English letters (a-z, A-Z)
- Digits (0-9)
- "_" (underscore)
- Must begin with an English letter or underscore.
- Maximum 65,535 characters.
- Case-insensitive.
#### avatar: `str`
Base64 encoding of the avatar. Defaults to `""`
#### description: `str`
A brief description of the dataset to create. Defaults to `""`.
#### language: `str`
The language setting of the dataset to create. Available options:
- `"English"` (Default)
- `"Chinese"`
#### permission
Specifies who can access the dataset to create. You can set it only to `"me"` for now.
#### chunk_method, `str`
The chunking method of the dataset to create. Available options:
- `"naive"`: General (default)
- `"manual`: Manual
- `"qa"`: Q&A
- `"table"`: Table
- `"paper"`: Paper
- `"book"`: Book
- `"laws"`: Laws
- `"presentation"`: Presentation
- `"picture"`: Picture
- `"one"`:One
- `"knowledge_graph"`: Knowledge Graph
- `"email"`: Email
#### parser_config
The parser configuration of the dataset. A `ParserConfig` object contains the following attributes:
- `chunk_token_count`: Defaults to `128`.
- `layout_recognize`: Defaults to `True`.
- `delimiter`: Defaults to `"\n!?。;!?"`.
- `task_page_size`: Defaults to `12`.
### Returns
- Success: A `dataset` object.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
```
---
## Delete datasets
```python
RAGFlow.delete_datasets(ids: list[str] = None)
```
Deletes specified datasets or all datasets in the system.
### Parameters
#### ids: `list[str]`
The IDs of the datasets to delete. Defaults to `None`. If not specified, all datasets in the system will be deleted.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
rag_object.delete_datasets(ids=["id_1","id_2"])
```
---
## List datasets
```python
RAGFlow.list_datasets(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[DataSet]
```
Retrieves a list of datasets.
### Parameters
#### page: `int`
Specifies the page on which the datasets will be displayed. Defaults to `1`.
#### page_size: `int`
The number of datasets on each page. Defaults to `1024`.
#### orderby: `str`
The field by which datasets should be sorted. Available options:
- `"create_time"` (default)
- `"update_time"`
#### desc: `bool`
Indicates whether the retrieved datasets should be sorted in descending order. Defaults to `True`.
#### id: `str`
The ID of the dataset to retrieve. Defaults to `None`.
#### name: `str`
The name of the dataset to retrieve. Defaults to `None`.
### Returns
- Success: A list of `DataSet` objects.
- Failure: `Exception`.
### Examples
#### List all datasets
```python
for dataset in rag_object.list_datasets():
print(dataset)
```
#### Retrieve a dataset by ID
```python
dataset = rag_object.list_datasets(id = "id_1")
print(dataset[0])
```
---
## Update dataset
```python
DataSet.update(update_message: dict)
```
Updates configurations for the current dataset.
### Parameters
#### update_message: `dict[str, str|int]`, *Required*
A dictionary representing the attributes to update, with the following keys:
- `"name"`: `str` The name of the dataset to update.
- `"embedding_model"`: `str` The embedding model name to update.
- Ensure that `"chunk_count"` is `0` before updating `"embedding_model"`.
- `"chunk_method"`: `str` The chunking method for the dataset. Available options:
- `"naive"`: General
- `"manual`: Manual
- `"qa"`: Q&A
- `"table"`: Table
- `"paper"`: Paper
- `"book"`: Book
- `"laws"`: Laws
- `"presentation"`: Presentation
- `"picture"`: Picture
- `"one"`:One
- `"knowledge_graph"`: Knowledge Graph
- `"email"`: Email
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_name")
dataset.update({"embedding_model":"BAAI/bge-zh-v1.5", "chunk_method":"manual"})
```
---
:::tip API GROUPING
File Management within Dataset
:::
---
## Upload documents
```python
DataSet.upload_documents(document_list: list[dict])
```
Uploads documents to the current dataset.
### Parameters
#### document_list: `list[dict]`, *Required*
A list of dictionaries representing the documents to upload, each containing the following keys:
- `"display_name"`: (Optional) The file name to display in the dataset.
- `"blob"`: (Optional) The binary content of the file to upload.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
dataset = rag_object.create_dataset(name="kb_name")
dataset.upload_documents([{"display_name": "1.txt", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}, {"display_name": "2.pdf", "blob": "<BINARY_CONTENT_OF_THE_DOC>"}])
```
---
## Update document
```python
Document.update(update_message:dict)
```
Updates configurations for the current document.
### Parameters
#### update_message: `dict[str, str|dict[]]`, *Required*
A dictionary representing the attributes to update, with the following keys:
- `"name"`: `str` The name of the document to update.
- `"parser_config"`: `dict[str, Any]` The parsing configuration for the document:
- `"chunk_token_count"`: Defaults to `128`.
- `"layout_recognize"`: Defaults to `True`.
- `"delimiter"`: Defaults to `'\n!?。;!?'`.
- `"task_page_size"`: Defaults to `12`.
- `"chunk_method"`: `str` The parsing method to apply to the document.
- `"naive"`: General
- `"manual`: Manual
- `"qa"`: Q&A
- `"table"`: Table
- `"paper"`: Paper
- `"book"`: Book
- `"laws"`: Laws
- `"presentation"`: Presentation
- `"picture"`: Picture
- `"one"`: One
- `"knowledge_graph"`: Knowledge Graph
- `"email"`: Email
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id='id')
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
doc.update([{"parser_config": {"chunk_token_count": 256}}, {"chunk_method": "manual"}])
```
---
## Download document
```python
Document.download() -> bytes
```
Downloads the current document.
### Returns
The downloaded document in bytes.
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="id")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
open("~/ragflow.txt", "wb+").write(doc.download())
print(doc)
```
---
## List documents
```python
Dataset.list_documents(id:str =None, keywords: str=None, offset: int=0, limit:int = 1024,order_by:str = "create_time", desc: bool = True) -> list[Document]
```
Retrieves a list of documents from the current dataset.
### Parameters
#### id: `str`
The ID of the document to retrieve. Defaults to `None`.
#### keywords: `str`
The keywords used to match document titles. Defaults to `None`.
#### offset: `int`
The starting index for the documents to retrieve. Typically used in confunction with `limit`. Defaults to `0`.
#### limit: `int`
The maximum number of documents to retrieve. Defaults to `1024`. A value of `-1` indicates that all documents should be returned.
#### orderby: `str`
The field by which documents should be sorted. Available options:
- `"create_time"` (default)
- `"update_time"`
#### desc: `bool`
Indicates whether the retrieved documents should be sorted in descending order. Defaults to `True`.
### Returns
- Success: A list of `Document` objects.
- Failure: `Exception`.
A `Document` object contains the following attributes:
- `id`: The document ID. Defaults to `""`.
- `name`: The document name. Defaults to `""`.
- `thumbnail`: The thumbnail image of the document. Defaults to `None`.
- `knowledgebase_id`: The dataset ID associated with the document. Defaults to `None`.
- `chunk_method` The chunk method name. Defaults to `""`. ?????naive??????
- `parser_config`: `ParserConfig` Configuration object for the parser. Defaults to `{"pages": [[1, 1000000]]}`.
- `source_type`: The source type of the document. Defaults to `"local"`.
- `type`: Type or category of the document. Defaults to `""`. Reserved for future use.
- `created_by`: `str` The creator of the document. Defaults to `""`.
- `size`: `int` The document size in bytes. Defaults to `0`.
- `token_count`: `int` The number of tokens in the document. Defaults to `0`.
- `chunk_count`: `int` The number of chunks in the document. Defaults to `0`.
- `progress`: `float` The current processing progress as a percentage. Defaults to `0.0`.
- `progress_msg`: `str` A message indicating the current progress status. Defaults to `""`.
- `process_begin_at`: `datetime` The start time of document processing. Defaults to `None`.
- `process_duation`: `float` Duration of the processing in seconds. Defaults to `0.0`.
- `run`: `str` The document's processing status:
- `"0"`: UNSTART (default)
- `"1"`: RUNNING
- `"2"`: CANCEL
- `"3"`: DONE
- `"4"`: FAIL
- `status`: `str` Reserved for future use.
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="kb_1")
filename1 = "~/ragflow.txt"
blob = open(filename1 , "rb").read()
dataset.upload_documents([{"name":filename1,"blob":blob}])
for doc in dataset.list_documents(keywords="rag", offset=0, limit=12):
print(doc)
```
---
## Delete documents
```python
DataSet.delete_documents(ids: list[str] = None)
```
Deletes documents by ID.
### Parameters
#### ids: `list[list]`
The IDs of the documents to delete. Defaults to `None`. If not specified, all documents in the dataset will be deleted.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="kb_1")
dataset = dataset[0]
dataset.delete_documents(ids=["id_1","id_2"])
```
---
## Parse documents
```python
DataSet.async_parse_documents(document_ids:list[str]) -> None
```
Parses documents in the current dataset.
### Parameters
#### document_ids: `list[str]`, *Required*
The IDs of the documents to parse.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
```
---
## Stop parsing documents
```python
DataSet.async_cancel_parse_documents(document_ids:list[str])-> None
```
Stops parsing specified documents.
### Parameters
#### document_ids: `list[str]`, *Required*
The IDs of the documents for which parsing should be stopped.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.create_dataset(name="dataset_name")
documents = [
{'name': 'test1.txt', 'blob': open('./test_data/test1.txt',"rb").read()},
{'name': 'test2.txt', 'blob': open('./test_data/test2.txt',"rb").read()},
{'name': 'test3.txt', 'blob': open('./test_data/test3.txt',"rb").read()}
]
dataset.upload_documents(documents)
documents = dataset.list_documents(keywords="test")
ids = []
for document in documents:
ids.append(document.id)
dataset.async_parse_documents(ids)
print("Async bulk parsing initiated.")
dataset.async_cancel_parse_documents(ids)
print("Async bulk parsing cancelled.")
```
---
## Add chunk
```python
Document.add_chunk(content:str) -> Chunk ?????????????????????
```
Adds a chunk to the current document.
### Parameters
#### content: `str`, *Required*
The text content of the chunk.
#### important_keywords: `list[str]` ??????????????????????
The key terms or phrases to tag with the chunk.
### Returns
- Success: A `Chunk` object.
- Failure: `Exception`.
A `Chunk` object contains the following attributes:
- `id`: `str`
- `content`: `str` Content of the chunk.
- `important_keywords`: `list[str]` A list of key terms or phrases to tag with the chunk.
- `create_time`: `str` The time when the chunk was created (added to the document).
- `create_timestamp`: `float` The timestamp representing the creation time of the chunk, expressed in seconds since January 1, 1970.
- `knowledgebase_id`: `str` The ID of the associated dataset.
- `document_name`: `str` The name of the associated document.
- `document_id`: `str` The ID of the associated document.
- `available`: `int`???? The chunk's availability status in the dataset. Value options:
- `0`: Unavailable
- `1`: Available
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dtaset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
```
---
## List chunks
```python
Document.list_chunks(keywords: str = None, offset: int = 0, limit: int = -1, id : str = None) -> list[Chunk]
```
Retrieves a list of chunks from the current document.
### Parameters
#### keywords: `str`
The keywords used to match chunk content. Defaults to `None`
#### offset: `int`
The starting index for the chunks to retrieve. Defaults to `1`??????
#### limit
The maximum number of chunks to retrieve. Default: `30`?????????
#### id
The ID of the chunk to retrieve. Default: `None`
### Returns
- Success: A list of `Chunk` objects.
- Failure: `Exception`.
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets("123")
dataset = dataset[0]
dataset.async_parse_documents(["wdfxb5t547d"])
for chunk in doc.list_chunks(keywords="rag", offset=0, limit=12):
print(chunk)
```
---
## Delete chunks
```python
Document.delete_chunks(chunk_ids: list[str])
```
Deletes chunks by ID.
### Parameters
#### chunk_ids: `list[str]`
The IDs of the chunks to delete. Defaults to `None`. If not specified, all chunks of the current document will be deleted.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
doc.delete_chunks(["id_1","id_2"])
```
---
## Update chunk
```python
Chunk.update(update_message: dict)
```
Updates content or configurations for the current chunk.
### Parameters
#### update_message: `dict[str, str|list[str]|int]` *Required*
A dictionary representing the attributes to update, with the following keys:
- `"content"`: `str` Content of the chunk.
- `"important_keywords"`: `list[str]` A list of key terms or phrases to tag with the chunk.
- `"available"`: `int` The chunk's availability status in the dataset. Value options:
- `0`: Unavailable
- `1`: Available
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(id="123")
dataset = dataset[0]
doc = dataset.list_documents(id="wdfxb5t547d")
doc = doc[0]
chunk = doc.add_chunk(content="xxxxxxx")
chunk.update({"content":"sdfx..."})
```
---
## Retrieve chunks
```python
RAGFlow.retrieve(question:str="", datasets:list[str]=None, document=list[str]=None, offset:int=1, limit:int=30, similarity_threshold:float=0.2, vector_similarity_weight:float=0.3, top_k:int=1024,rerank_id:str=None,keyword:bool=False,higlight:bool=False) -> list[Chunk]
```
???????
### Parameters
#### question: `str` *Required*
The user query or query keywords. Defaults to `""`.
#### datasets: `list[str]`, *Required*?????
The datasets to search from.
#### document: `list[str]`
The documents to search from. `None` means no limitation. Defaults to `None`.
#### offset: `int`
The starting index for the documents to retrieve. Defaults to `0`??????.
#### limit: `int`
The maximum number of chunks to retrieve. Defaults to `6`.???????????????
#### Similarity_threshold: `float`
The minimum similarity score. Defaults to `0.2`.
#### similarity_threshold_weight: `float`
The weight of vector cosine similarity. Defaults to `0.3`. If x represents the vector cosine similarity, then (1 - x) is the term similarity weight.
#### top_k: `int`
The number of chunks engaged in vector cosine computaton. Defaults to `1024`.
#### rerank_id: `str`
The ID of the rerank model. Defaults to `None`.
#### keyword: `bool`
Indicates whether keyword-based matching is enabled:
- `True`: Enabled.
- `False`: Disabled (default).
#### highlight: `bool`
Specifying whether to enable highlighting of matched terms in the results (True) or not (False).
### Returns
- Success: A list of `Chunk` objects representing the document chunks.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
dataset = rag_object.list_datasets(name="ragflow")
dataset = dataset[0]
name = 'ragflow_test.txt'
path = './test_data/ragflow_test.txt'
rag_object.create_document(dataset, name=name, blob=open(path, "rb").read())
doc = dataset.list_documents(name=name)
doc = doc[0]
dataset.async_parse_documents([doc.id])
for c in rag_object.retrieve(question="What's ragflow?",
datasets=[dataset.id], documents=[doc.id],
offset=1, limit=30, similarity_threshold=0.2,
vector_similarity_weight=0.3,
top_k=1024
):
print(c)
```
---
:::tip API GROUPING
Chat Assistant Management
:::
---
## Create chat assistant
```python
RAGFlow.create_chat(
name: str,
avatar: str = "",
knowledgebases: list[str] = [],
llm: Chat.LLM = None,
prompt: Chat.Prompt = None
) -> Chat
```
Creates a chat assistant.
### Parameters
The following shows the attributes of a `Chat` object:
#### name: `str`, *Required*????????
The name of the chat assistant. Defaults to `"assistant"`.
#### avatar: `str`
Base64 encoding of the avatar. Defaults to `""`.
#### knowledgebases: `list[str]`
The IDs of the associated datasets. Defaults to `[""]`.
#### llm: `Chat.LLM`
The llm of the created chat. Defaults to `None`. When the value is `None`, a dictionary with the following values will be generated as the default.
An `LLM` object contains the following attributes:
- `model_name`, `str`
The chat model name. If it is `None`, the user's default chat model will be returned.
- `temperature`, `float`
Controls the randomness of the model's predictions. A lower temperature increases the model's conficence in its responses; a higher temperature increases creativity and diversity. Defaults to `0.1`.
- `top_p`, `float`
Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from. It focuses on the most likely words, cutting off the less probable ones. Defaults to `0.3`
- `presence_penalty`, `float`
This discourages the model from repeating the same information by penalizing words that have already appeared in the conversation. Defaults to `0.2`.
- `frequency penalty`, `float`
Similar to the presence penalty, this reduces the model’s tendency to repeat the same words frequently. Defaults to `0.7`.
- `max_token`, `int`
This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words). Defaults to `512`.
#### prompt: `Chat.Prompt`
Instructions for the LLM to follow. A `Prompt` object contains the following attributes:
- `"similarity_threshold"`: `float` A similarity score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to `0.2`.
- `"keywords_similarity_weight"`: `float` It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to `0.7`.
- `"top_n"`: `int` Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to `8`.
- `"variables"`: `list[dict[]]` If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to `[{"key": "knowledge", "optional": True}]`
- `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
- `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
- `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
- `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
- `"prompt"`: `str` The prompt content. Defaults to `You are an intelligent assistant. Please summarize the content of the dataset to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.`.
### Returns
- Success: A `Chat` object representing the chat assistant.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
dataset_ids = []
for dataset in datasets:
dataset_ids.append(dataset.id)
assistant = rag_object.create_chat("Miss R", knowledgebases=dataset_ids)
```
---
## Update chat assistant
```python
Chat.update(update_message: dict)
```
Updates configurations for the current chat assistant.
### Parameters
#### update_message: `dict[str, str|list[str]|dict[]]`, *Required*
A dictionary representing the attributes to update, with the following keys:
- `"name"`: `str` The name of the chat assistant to update.
- `"avatar"`: `str` Base64 encoding of the avatar. Defaults to `""`
- `"knowledgebases"`: `list[str]` The datasets to update.
- `"llm"`: `dict` The LLM settings:
- `"model_name"`, `str` The chat model name.
- `"temperature"`, `float` Controls the randomness of the model's predictions.
- `"top_p"`, `float` Also known as “nucleus sampling”, this parameter sets a threshold to select a smaller set of words to sample from.
- `"presence_penalty"`, `float` This discourages the model from repeating the same information by penalizing words that have appeared in the conversation.
- `"frequency penalty"`, `float` Similar to presence penalty, this reduces the model’s tendency to repeat the same words.
- `"max_token"`, `int` This sets the maximum length of the model’s output, measured in the number of tokens (words or pieces of words).
- `"prompt"` : Instructions for the LLM to follow.
- `"similarity_threshold"`: `float` A score to evaluate distance between two lines of text. It's weighted keywords similarity and vector cosine similarity. If the similarity between query and chunk is less than this threshold, the chunk will be filtered out. Defaults to `0.2`.
- `"keywords_similarity_weight"`: `float` It's weighted keywords similarity and vector cosine similarity or rerank score (0~1). Defaults to `0.7`.
- `"top_n"`: `int` Not all the chunks whose similarity score is above the 'similarity threshold' will be feed to LLMs. LLM can only see these 'Top N' chunks. Defaults to `8`.
- `"variables"`: `list[dict[]]` If you use dialog APIs, the variables might help you chat with your clients with different strategies. The variables are used to fill in the 'System' part in prompt in order to give LLM a hint. The 'knowledge' is a very special variable which will be filled-in with the retrieved chunks. All the variables in 'System' should be curly bracketed. Defaults to `[{"key": "knowledge", "optional": True}]`
- `"rerank_model"`: `str` If it is not specified, vector cosine similarity will be used; otherwise, reranking score will be used. Defaults to `""`.
- `"empty_response"`: `str` If nothing is retrieved in the dataset for the user's question, this will be used as the response. To allow the LLM to improvise when nothing is retrieved, leave this blank. Defaults to `None`.
- `"opener"`: `str` The opening greeting for the user. Defaults to `"Hi! I am your assistant, can I help you?"`.
- `"show_quote`: `bool` Indicates whether the source of text should be displayed Defaults to `True`.
- `"prompt"`: `str` The prompt content. Defaults to `You are an intelligent assistant. Please summarize the content of the knowledge base to answer the question. Please list the data in the knowledge base and answer in detail. When all knowledge base content is irrelevant to the question, your answer must include the sentence "The answer you are looking for is not found in the knowledge base!" Answers need to consider chat history.
Here is the knowledge base:
{knowledge}
The above is the knowledge base.`.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
datasets = rag_object.list_datasets(name="kb_1")
assistant = rag_object.create_chat("Miss R", knowledgebases=datasets)
assistant.update({"name": "Stefan", "llm": {"temperature": 0.8}, "prompt": {"top_n": 8}})
```
---
## Delete chat assistants
```python
RAGFlow.delete_chats(ids: list[str] = None)
```
Deletes chat assistants by ID.
### Parameters
#### ids: `list[str]`
The IDs of the chat assistants to delete. Defaults to `None`. If not specified, all chat assistants in the system will be deleted.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
rag_object.delete_chats(ids=["id_1","id_2"])
```
---
## List chat assistants
```python
RAGFlow.list_chats(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Chat]
```
Retrieves a list of chat assistants.
### Parameters
#### page: `int`
Specifies the page on which the chat assistants will be displayed. Defaults to `1`.
#### page_size: `int`
The number of chat assistants on each page. Defaults to `1024`.
#### orderby: `str`
The attribute by which the results are sorted. Available options:
- `"create_time"` (default)
- `"update_time"`
#### desc: `bool`
Indicates whether the retrieved chat assistants should be sorted in descending order. Defaults to `True`.
#### id: `str`
The ID of the chat assistant to retrieve. Defaults to `None`.
#### name: `str`
The name of the chat assistant to retrieve. Defaults to `None`.
### Returns
- Success: A list of `Chat` objects.
- Failure: `Exception`.
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
for assistant in rag_object.list_chats():
print(assistant)
```
---
:::tip API GROUPING
Chat Session APIs
:::
---
## Create session
```python
Chat.create_session(name: str = "New session") -> Session
```
Creates a chat session.
### Parameters
#### name: `str`
The name of the chat session to create.
### Returns
- Success: A `Session` object containing the following attributes:
- `id`: `str` The auto-generated unique identifier of the created session.
- `name`: `str` The name of the created session.
- `message`: `list[Message]` The messages of the created session assistant. Default: `[{"role": "assistant", "content": "Hi! I am your assistant,can I help you?"}]`
- `chat_id`: `str` The ID of the associated chat assistant.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
```
---
## Update session
```python
Session.update(update_message: dict)
```
Updates the current session name.
### Parameters
#### update_message: `dict[str, Any]`, *Required*
A dictionary representing the attributes to update, with only one key:
- `"name"`: `str` The name of the session to update.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session("session_name")
session.update({"name": "updated_name"})
```
---
## List sessions
```python
Chat.list_sessions(
page: int = 1,
page_size: int = 1024,
orderby: str = "create_time",
desc: bool = True,
id: str = None,
name: str = None
) -> list[Session]
```
Lists sessions associated with the current chat assistant.
### Parameters
#### page: `int`
Specifies the page on which the sessions will be displayed. Defaults to `1`.
#### page_size: `int`
The number of sessions on each page. Defaults to `1024`.
#### orderby: `str`
The field by which sessions should be sorted. Available options:
- `"create_time"` (default)
- `"update_time"`
#### desc: `bool`
Indicates whether the retrieved sessions should be sorted in descending order. Defaults to `True`.
#### id: `str`
The ID of the chat session to retrieve. Defaults to `None`.
#### name: `str`
The name of the chat session to retrieve. Defaults to `None`.
### Returns
- Success: A list of `Session` objects associated with the current chat assistant.
- Failure: `Exception`.
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
for session in assistant.list_sessions():
print(session)
```
---
## Delete sessions
```python
Chat.delete_sessions(ids:list[str] = None)
```
Deletes sessions by ID.
### Parameters
#### ids: `list[str]`
The IDs of the sessions to delete. Defaults to `None`. If not specified, all sessions associated with the current chat assistant will be deleted.
### Returns
- Success: No value is returned.
- Failure: `Exception`
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
assistant.delete_sessions(ids=["id_1","id_2"])
```
---
## Chat
```python
Session.ask(question: str, stream: bool = False) -> Optional[Message, iter[Message]]
```
Asks a question to start a conversation.
### Parameters
#### question: `str` *Required*
The question to start an AI chat.
#### stream: `str`
Indicates whether to output responses in a streaming way:
- `True`: Enable streaming.
- `False`: (Default) Disable streaming.
### Returns
- A `Message` object containing the response to the question if `stream` is set to `False`
- An iterator containing multiple `message` objects (`iter[Message]`) if `stream` is set to `True`
The following shows the attributes of a `Message` object:
#### id: `str`
The auto-generated message ID.
#### content: `str`
The content of the message. Defaults to `"Hi! I am your assistant, can I help you?"`.
#### reference: `list[Chunk]`
A list of `Chunk` objects representing references to the message, each containing the following attributes:
- `id` `str`
The chunk ID.
- `content` `str`
The content of the chunk.
- `image_id` `str`
The ID of the snapshot of the chunk.
- `document_id` `str`
The ID of the referenced document.
- `document_name` `str`
The name of the referenced document.
- `position` `list[str]`
The location information of the chunk within the referenced document.
- `knowledgebase_id` `str`
The ID of the dataset to which the referenced document belongs.
- `similarity` `float`
A composite similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity.
- `vector_similarity` `float`
A vector similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between vector embeddings.
- `term_similarity` `float`
A keyword similarity score of the chunk ranging from `0` to `1`, with a higher value indicating greater similarity between keywords.
### Examples
```python
from ragflow import RAGFlow
rag_object = RAGFlow(api_key="<YOUR_API_KEY>", base_url="http://<YOUR_BASE_URL>:9380")
assistant = rag_object.list_chats(name="Miss R")
assistant = assistant[0]
session = assistant.create_session()
print("\n==================== Miss R =====================\n")
print(assistant.get_prologue())
while True:
question = input("\n==================== User =====================\n> ")
print("\n==================== Miss R =====================\n")
cont = ""
for ans in session.ask(question, stream=True):
print(answer.content[len(cont):], end='', flush=True)
cont = answer.content
``` |