remiai3's picture
Update app.py
61df085 verified
raw
history blame
4.17 kB
from flask import Flask, request, jsonify
from flask_cors import CORS
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import torch
import os
from PIL import Image
import base64
import time
import logging
# Disable GPU detection
os.environ["CUDA_VISIBLE_DEVICES"] = ""
os.environ["CUDA_DEVICE_ORDER"] = ""
os.environ["TORCH_CUDA_ARCH_LIST"] = ""
torch.set_default_device("cpu")
app = Flask(__name__, static_folder='static')
CORS(app)
# Configure logging
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Log device in use
logger.info(f"Device in use: {torch.device('cpu')}")
# Model cache
model_cache = {}
model_paths = {
"ssd-1b": "remiai3/ssd-1b",
"sd-v1-5": "remiai3/stable-diffusion-v1-5"
}
# Image ratio to dimensions (optimized for CPU)
ratio_to_dims = {
"1:1": (256, 256),
"3:4": (192, 256),
"16:9": (256, 144)
}
def load_model(model_id):
if model_id not in model_cache:
logger.info(f"Loading model {model_id}...")
try:
pipe = StableDiffusionPipeline.from_pretrained(
model_paths[model_id],
torch_dtype=torch.float32,
use_auth_token=os.getenv("HF_TOKEN"),
use_safetensors=True,
low_cpu_mem_usage=True
)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_attention_slicing()
pipe.to(torch.device("cpu"))
model_cache[model_id] = pipe
logger.info(f"Model {model_id} loaded successfully")
except Exception as e:
logger.error(f"Error loading model {model_id}: {str(e)}")
raise
return model_cache[model_id]
@app.route('/')
def index():
return app.send_static_file('index.html')
@app.route('/assets/<path:filename>')
def serve_assets(filename):
return app.send_static_file(os.path.join('assets', filename))
@app.route('/generate', methods=['POST'])
def generate():
try:
data = request.json
model_id = data.get('model', 'ssd-1b')
prompt = data.get('prompt', '')
ratio = data.get('ratio', '1:1')
num_images = min(int(data.get('num_images', 1)), 4)
guidance_scale = float(data.get('guidance_scale', 7.5))
if not prompt:
return jsonify({"error": "Prompt is required"}), 400
if model_id == 'ssd-1b' and num_images > 1:
return jsonify({"error": "SSD-1B allows only 1 image per generation"}), 400
if model_id == 'ssd-1b' and ratio != '1:1':
return jsonify({"error": "SSD-1B supports only 1:1 ratio"}), 400
if model_id == 'sd-v1-5' and len(prompt.split()) > 77:
return jsonify({"error": "Prompt exceeds 77 tokens for Stable Diffusion v1.5"}), 400
width, height = ratio_to_dims.get(ratio, (256, 256))
pipe = load_model(model_id)
pipe.to(torch.device("cpu"))
images = []
num_inference_steps = 30 if model_id == 'ssd-1b' else 40
for _ in range(num_images):
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale
).images[0]
images.append(image)
output_dir = "outputs"
os.makedirs(output_dir, exist_ok=True)
image_urls = []
for i, img in enumerate(images):
img_path = os.path.join(output_dir, f"generated_{int(time.time())}_{i}.png")
img.save(img_path)
with open(img_path, "rb") as f:
img_data = base64.b64encode(f.read()).decode('utf-8')
image_urls.append(f"data:image/png;base64,{img_data}")
os.remove(img_path)
return jsonify({"images": image_urls})
except Exception as e:
logger.error(f"Image generation failed: {str(e)}")
return jsonify({"error": f"Image generation failed: {str(e)}"}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)