from flask import Flask, request, jsonify from flask_cors import CORS from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch import os from PIL import Image import base64 import time import logging # Disable GPU detection os.environ["CUDA_VISIBLE_DEVICES"] = "" os.environ["CUDA_DEVICE_ORDER"] = "" os.environ["TORCH_CUDA_ARCH_LIST"] = "" torch.set_default_device("cpu") app = Flask(__name__, static_folder='static') CORS(app) # Configure logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Log device in use logger.info(f"Device in use: {torch.device('cpu')}") # Model cache model_cache = {} model_paths = { "ssd-1b": "remiai3/ssd-1b", "sd-v1-5": "remiai3/stable-diffusion-v1-5" } # Image ratio to dimensions (optimized for CPU) ratio_to_dims = { "1:1": (256, 256), "3:4": (192, 256), "16:9": (256, 144) } def load_model(model_id): if model_id not in model_cache: logger.info(f"Loading model {model_id}...") try: pipe = StableDiffusionPipeline.from_pretrained( model_paths[model_id], torch_dtype=torch.float32, use_auth_token=os.getenv("HF_TOKEN"), use_safetensors=True, low_cpu_mem_usage=True ) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_attention_slicing() pipe.to(torch.device("cpu")) model_cache[model_id] = pipe logger.info(f"Model {model_id} loaded successfully") except Exception as e: logger.error(f"Error loading model {model_id}: {str(e)}") raise return model_cache[model_id] @app.route('/') def index(): return app.send_static_file('index.html') @app.route('/assets/') def serve_assets(filename): return app.send_static_file(os.path.join('assets', filename)) @app.route('/generate', methods=['POST']) def generate(): try: data = request.json model_id = data.get('model', 'ssd-1b') prompt = data.get('prompt', '') ratio = data.get('ratio', '1:1') num_images = min(int(data.get('num_images', 1)), 4) guidance_scale = float(data.get('guidance_scale', 7.5)) if not prompt: return jsonify({"error": "Prompt is required"}), 400 if model_id == 'ssd-1b' and num_images > 1: return jsonify({"error": "SSD-1B allows only 1 image per generation"}), 400 if model_id == 'ssd-1b' and ratio != '1:1': return jsonify({"error": "SSD-1B supports only 1:1 ratio"}), 400 if model_id == 'sd-v1-5' and len(prompt.split()) > 77: return jsonify({"error": "Prompt exceeds 77 tokens for Stable Diffusion v1.5"}), 400 width, height = ratio_to_dims.get(ratio, (256, 256)) pipe = load_model(model_id) pipe.to(torch.device("cpu")) images = [] num_inference_steps = 30 if model_id == 'ssd-1b' else 40 for _ in range(num_images): image = pipe( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale ).images[0] images.append(image) output_dir = "outputs" os.makedirs(output_dir, exist_ok=True) image_urls = [] for i, img in enumerate(images): img_path = os.path.join(output_dir, f"generated_{int(time.time())}_{i}.png") img.save(img_path) with open(img_path, "rb") as f: img_data = base64.b64encode(f.read()).decode('utf-8') image_urls.append(f"data:image/png;base64,{img_data}") os.remove(img_path) return jsonify({"images": image_urls}) except Exception as e: logger.error(f"Image generation failed: {str(e)}") return jsonify({"error": f"Image generation failed: {str(e)}"}), 500 if __name__ == '__main__': app.run(host='0.0.0.0', port=7860)