|
import os |
|
import gradio as gr |
|
import requests |
|
import json |
|
from PIL import Image |
|
|
|
def get_attributes(json): |
|
liveness = "GENUINE" if json.get('liveness') >= 0.5 else "FAKE" |
|
attr = json.get('attribute') |
|
age = attr.get('age') |
|
gender = attr.get('gender') |
|
emotion = attr.get('emotion') |
|
ethnicity = attr.get('ethnicity') |
|
|
|
mask = [attr.get('face_mask')] |
|
if attr.get('glasses') == 'USUAL': |
|
mask.append('GLASSES') |
|
if attr.get('glasses') == 'DARK': |
|
mask.append('SUNGLASSES') |
|
|
|
eye = [] |
|
if attr.get('eye_left') >= 0.3: |
|
eye.append('LEFT') |
|
if attr.get('eye_right') >= 0.3: |
|
eye.append('RIGHT') |
|
facehair = attr.get('facial_hair') |
|
haircolor = attr.get('hair_color') |
|
hairtype = attr.get('hair_type') |
|
headwear = attr.get('headwear') |
|
|
|
activity = [] |
|
if attr.get('food_consumption') >= 0.5: |
|
activity.append('EATING') |
|
if attr.get('phone_recording') >= 0.5: |
|
activity.append('PHONE_RECORDING') |
|
if attr.get('phone_use') >= 0.5: |
|
activity.append('PHONE_USE') |
|
if attr.get('seatbelt') >= 0.5: |
|
activity.append('SEATBELT') |
|
if attr.get('smoking') >= 0.5: |
|
activity.append('SMOKING') |
|
|
|
pitch = attr.get('pitch') |
|
roll = attr.get('roll') |
|
yaw = attr.get('yaw') |
|
quality = attr.get('quality') |
|
return liveness, age, gender, emotion, ethnicity, mask, eye, facehair, haircolor, hairtype, headwear, activity, pitch, roll, yaw, quality |
|
|
|
def compare_face(frame1, frame2): |
|
url = "https://recognito.p.rapidapi.com/api/face" |
|
try: |
|
files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')} |
|
headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")} |
|
|
|
r = requests.post(url=url, files=files, headers=headers) |
|
except: |
|
raise gr.Error("Please select images files!") |
|
|
|
faces = None |
|
|
|
try: |
|
image1 = Image.open(frame1) |
|
image2 = Image.open(frame2) |
|
|
|
face1 = Image.new('RGBA',(150, 150), (80,80,80,0)) |
|
face2 = Image.new('RGBA',(150, 150), (80,80,80,0)) |
|
|
|
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1 = [None] * 16 |
|
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2 = [None] * 16 |
|
res1 = r.json().get('image1') |
|
|
|
if res1 is not None and res1: |
|
face = res1.get('detection') |
|
x1 = face.get('x') |
|
y1 = face.get('y') |
|
x2 = x1 + face.get('w') |
|
y2 = y1 + face.get('h') |
|
if x1 < 0: |
|
x1 = 0 |
|
if y1 < 0: |
|
y1 = 0 |
|
if x2 >= image1.width: |
|
x2 = image1.width - 1 |
|
if y2 >= image1.height: |
|
y2 = image1.height - 1 |
|
|
|
face1 = image1.crop((x1, y1, x2, y2)) |
|
face_image_ratio = face1.width / float(face1.height) |
|
resized_w = int(face_image_ratio * 150) |
|
resized_h = 150 |
|
|
|
face1 = face1.resize((int(resized_w), int(resized_h))) |
|
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1 = get_attributes(res1) |
|
|
|
res2 = r.json().get('image2') |
|
if res2 is not None and res2: |
|
face = res2.get('detection') |
|
x1 = face.get('x') |
|
y1 = face.get('y') |
|
x2 = x1 + face.get('w') |
|
y2 = y1 + face.get('h') |
|
|
|
if x1 < 0: |
|
x1 = 0 |
|
if y1 < 0: |
|
y1 = 0 |
|
if x2 >= image2.width: |
|
x2 = image2.width - 1 |
|
if y2 >= image2.height: |
|
y2 = image2.height - 1 |
|
|
|
face2 = image2.crop((x1, y1, x2, y2)) |
|
face_image_ratio = face2.width / float(face2.height) |
|
resized_w = int(face_image_ratio * 150) |
|
resized_h = 150 |
|
|
|
face2 = face2.resize((int(resized_w), int(resized_h))) |
|
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2 = get_attributes(res2) |
|
except: |
|
pass |
|
|
|
matching_result = "" |
|
if face1 is not None and face2 is not None: |
|
matching_score = r.json().get('matching_score') |
|
if matching_score is not None: |
|
matching_result = """<br/><br/><br/><h1 style="text-align: center;color: #05ee3c;">SAME<br/>PERSON</h1>""" if matching_score >= 0.7 else """<br/><br/><br/><h1 style="text-align: center;color: red;">DIFFERENT<br/>PERSON</h1>""" |
|
|
|
return [r.json(), [face1, face2], matching_result, |
|
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1, |
|
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
""" |
|
# **Recognito Face Analysis** |
|
## NIST FRVT Top #1 Face Recognition Algorithm Developer<br/> |
|
## Contact us at https://recognito.vision |
|
<img src="https://recognito.vision/wp-content/uploads/2023/12/black-1.png" alt="NIST FRVT 1:1 Leaderboard" width="50%"> |
|
""" |
|
) |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
compare_face_input1 = gr.Image(label="Image1", type='filepath', height=270) |
|
gr.Examples(['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg'], |
|
inputs=compare_face_input1) |
|
compare_face_input2 = gr.Image(label="Image2", type='filepath', height=270) |
|
gr.Examples(['examples/5.jpg', 'examples/6.jpg', 'examples/7.jpg', 'examples/8.jpg'], |
|
inputs=compare_face_input2) |
|
compare_face_button = gr.Button("Face Analysis & Verification", variant="primary", size="lg") |
|
|
|
with gr.Column(scale=2): |
|
with gr.Row(): |
|
compare_face_output = gr.Gallery(label="Faces", height=230, columns=[2], rows=[1]) |
|
with gr.Column(variant="panel"): |
|
compare_result = gr.Markdown("") |
|
|
|
with gr.Row(): |
|
with gr.Column(variant="panel"): |
|
gr.Markdown("<b>Image 1<b/>") |
|
liveness1 = gr.CheckboxGroup(["GENUINE", "FAKE"], label="Liveness") |
|
age1 = gr.Number(0, label="Age") |
|
gender1 = gr.CheckboxGroup(["MALE", "FEMALE"], label="Gender") |
|
emotion1 = gr.CheckboxGroup(["HAPPINESS", "ANGER", "FEAR", "NEUTRAL", "SADNESS", "SURPRISE"], label="Emotion") |
|
ethnicity1 = gr.CheckboxGroup(["ASIAN", "BLACK", "CAUCASIAN", "EAST_INDIAN"], label="Ethnicity") |
|
mask1 = gr.CheckboxGroup(["LOWER_FACE_MASK", "FULL_FACE_MASK", "OTHER_MASK", "GLASSES", "SUNGLASSES"], label="Mask & Glasses") |
|
eye1 = gr.CheckboxGroup(["LEFT", "RIGHT"], label="Eye Open") |
|
facehair1 = gr.CheckboxGroup(["BEARD", "BRISTLE", "MUSTACHE", "SHAVED"], label="Facial Hair") |
|
haircolor1 = gr.CheckboxGroup(["BLACK", "BLOND", "BROWN"], label="Hair Color") |
|
hairtype1 = gr.CheckboxGroup(["BALD", "SHORT", "MEDIUM", "LONG"], label="Hair Type") |
|
headwear1 = gr.CheckboxGroup(["B_CAP", "CAP", "HAT", "HELMET", "HOOD"], label="Head Wear") |
|
activity1 = gr.CheckboxGroup(["EATING", "PHONE_RECORDING", "PHONE_USE", "SMOKING", "SEATBELT"], label="Activity") |
|
with gr.Row(): |
|
pitch1 = gr.Number(0, label="Pitch") |
|
roll1 = gr.Number(0, label="Roll") |
|
yaw1 = gr.Number(0, label="Yaw") |
|
quality1 = gr.Number(0, label="Quality") |
|
with gr.Column(variant="panel"): |
|
gr.Markdown("<b>Image 2<b/>") |
|
liveness2 = gr.CheckboxGroup(["GENUINE", "FAKE"], label="Liveness") |
|
age2 = gr.Number(0, label="Age") |
|
gender2 = gr.CheckboxGroup(["MALE", "FEMALE"], label="Gender") |
|
emotion2 = gr.CheckboxGroup(["HAPPINESS", "ANGER", "FEAR", "NEUTRAL", "SADNESS", "SURPRISE"], label="Emotion") |
|
ethnicity2 = gr.CheckboxGroup(["ASIAN", "BLACK", "CAUCASIAN", "EAST_INDIAN"], label="Ethnicity") |
|
mask2 = gr.CheckboxGroup(["LOWER_FACE_MASK", "FULL_FACE_MASK", "OTHER_MASK", "GLASSES", "SUNGLASSES"], label="Mask & Glasses") |
|
eye2 = gr.CheckboxGroup(["LEFT", "RIGHT"], label="Eye Open") |
|
facehair2 = gr.CheckboxGroup(["BEARD", "BRISTLE", "MUSTACHE", "SHAVED"], label="Facial Hair") |
|
haircolor2 = gr.CheckboxGroup(["BLACK", "BLOND", "BROWN"], label="Hair Color") |
|
hairtype2 = gr.CheckboxGroup(["BALD", "SHORT", "MEDIUM", "LONG"], label="Hair Type") |
|
headwear2 = gr.CheckboxGroup(["B_CAP", "CAP", "HAT", "HELMET", "HOOD"], label="Head Wear") |
|
activity2 = gr.CheckboxGroup(["EATING", "PHONE_RECORDING", "PHONE_USE", "SMOKING", "SEATBELT"], label="Activity") |
|
with gr.Row(): |
|
pitch2 = gr.Number(0, label="Pitch") |
|
roll2 = gr.Number(0, label="Roll") |
|
yaw2 = gr.Number(0, label="Yaw") |
|
quality2 = gr.Number(0, label="Quality") |
|
|
|
compare_result_output = gr.JSON(label='Result', visible=False) |
|
|
|
compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_result_output, compare_face_output, compare_result, |
|
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1, |
|
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2]) |
|
|
|
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False) |