File size: 10,283 Bytes
2acde75 92bed75 5bbeea1 92bed75 2acde75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import os
import gradio as gr
import requests
import json
from PIL import Image
def get_attributes(json):
liveness = "GENUINE" if json.get('liveness') >= 0.5 else "FAKE"
attr = json.get('attribute')
age = attr.get('age')
gender = attr.get('gender')
emotion = attr.get('emotion')
ethnicity = attr.get('ethnicity')
mask = [attr.get('face_mask')]
if attr.get('glasses') == 'USUAL':
mask.append('GLASSES')
if attr.get('glasses') == 'DARK':
mask.append('SUNGLASSES')
eye = []
if attr.get('eye_left') >= 0.3:
eye.append('LEFT')
if attr.get('eye_right') >= 0.3:
eye.append('RIGHT')
facehair = attr.get('facial_hair')
haircolor = attr.get('hair_color')
hairtype = attr.get('hair_type')
headwear = attr.get('headwear')
activity = []
if attr.get('food_consumption') >= 0.5:
activity.append('EATING')
if attr.get('phone_recording') >= 0.5:
activity.append('PHONE_RECORDING')
if attr.get('phone_use') >= 0.5:
activity.append('PHONE_USE')
if attr.get('seatbelt') >= 0.5:
activity.append('SEATBELT')
if attr.get('smoking') >= 0.5:
activity.append('SMOKING')
pitch = attr.get('pitch')
roll = attr.get('roll')
yaw = attr.get('yaw')
quality = attr.get('quality')
return liveness, age, gender, emotion, ethnicity, mask, eye, facehair, haircolor, hairtype, headwear, activity, pitch, roll, yaw, quality
def compare_face(frame1, frame2):
url = "https://recognito.p.rapidapi.com/api/face"
try:
files = {'image1': open(frame1, 'rb'), 'image2': open(frame2, 'rb')}
headers = {"X-RapidAPI-Key": os.environ.get("API_KEY")}
r = requests.post(url=url, files=files, headers=headers)
except:
raise gr.Error("Please select images files!")
faces = None
try:
image1 = Image.open(frame1)
image2 = Image.open(frame2)
face1 = Image.new('RGBA',(150, 150), (80,80,80,0))
face2 = Image.new('RGBA',(150, 150), (80,80,80,0))
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1 = [None] * 16
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2 = [None] * 16
res1 = r.json().get('image1')
if res1 is not None and res1:
face = res1.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image1.width:
x2 = image1.width - 1
if y2 >= image1.height:
y2 = image1.height - 1
face1 = image1.crop((x1, y1, x2, y2))
face_image_ratio = face1.width / float(face1.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face1 = face1.resize((int(resized_w), int(resized_h)))
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1 = get_attributes(res1)
res2 = r.json().get('image2')
if res2 is not None and res2:
face = res2.get('detection')
x1 = face.get('x')
y1 = face.get('y')
x2 = x1 + face.get('w')
y2 = y1 + face.get('h')
if x1 < 0:
x1 = 0
if y1 < 0:
y1 = 0
if x2 >= image2.width:
x2 = image2.width - 1
if y2 >= image2.height:
y2 = image2.height - 1
face2 = image2.crop((x1, y1, x2, y2))
face_image_ratio = face2.width / float(face2.height)
resized_w = int(face_image_ratio * 150)
resized_h = 150
face2 = face2.resize((int(resized_w), int(resized_h)))
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2 = get_attributes(res2)
except:
pass
matching_result = ""
if face1 is not None and face2 is not None:
matching_score = r.json().get('matching_score')
if matching_score is not None:
matching_result = """<br/><br/><br/><h1 style="text-align: center;color: #05ee3c;">SAME<br/>PERSON</h1>""" if matching_score >= 0.7 else """<br/><br/><br/><h1 style="text-align: center;color: red;">DIFFERENT<br/>PERSON</h1>"""
return [r.json(), [face1, face2], matching_result,
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1,
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2]
with gr.Blocks() as demo:
gr.Markdown(
"""
# **Recognito Face Analysis**
## NIST FRVT Top #1 Face Recognition Algorithm Developer<br/>
## Contact us at https://recognito.vision
<img src="https://recognito.vision/wp-content/uploads/2023/12/black-1.png" alt="NIST FRVT 1:1 Leaderboard" width="50%">
"""
)
with gr.Row():
with gr.Column(scale=1):
compare_face_input1 = gr.Image(label="Image1", type='filepath', height=270)
gr.Examples(['examples/1.jpg', 'examples/2.jpg', 'examples/3.jpg', 'examples/4.jpg'],
inputs=compare_face_input1)
compare_face_input2 = gr.Image(label="Image2", type='filepath', height=270)
gr.Examples(['examples/5.jpg', 'examples/6.jpg', 'examples/7.jpg', 'examples/8.jpg'],
inputs=compare_face_input2)
compare_face_button = gr.Button("Face Analysis & Verification", variant="primary", size="lg")
with gr.Column(scale=2):
with gr.Row():
compare_face_output = gr.Gallery(label="Faces", height=230, columns=[2], rows=[1])
with gr.Column(variant="panel"):
compare_result = gr.Markdown("")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("<b>Image 1<b/>")
liveness1 = gr.CheckboxGroup(["GENUINE", "FAKE"], label="Liveness")
age1 = gr.Number(0, label="Age")
gender1 = gr.CheckboxGroup(["MALE", "FEMALE"], label="Gender")
emotion1 = gr.CheckboxGroup(["HAPPINESS", "ANGER", "FEAR", "NEUTRAL", "SADNESS", "SURPRISE"], label="Emotion")
ethnicity1 = gr.CheckboxGroup(["ASIAN", "BLACK", "CAUCASIAN", "EAST_INDIAN"], label="Ethnicity")
mask1 = gr.CheckboxGroup(["LOWER_FACE_MASK", "FULL_FACE_MASK", "OTHER_MASK", "GLASSES", "SUNGLASSES"], label="Mask & Glasses")
eye1 = gr.CheckboxGroup(["LEFT", "RIGHT"], label="Eye Open")
facehair1 = gr.CheckboxGroup(["BEARD", "BRISTLE", "MUSTACHE", "SHAVED"], label="Facial Hair")
haircolor1 = gr.CheckboxGroup(["BLACK", "BLOND", "BROWN"], label="Hair Color")
hairtype1 = gr.CheckboxGroup(["BALD", "SHORT", "MEDIUM", "LONG"], label="Hair Type")
headwear1 = gr.CheckboxGroup(["B_CAP", "CAP", "HAT", "HELMET", "HOOD"], label="Head Wear")
activity1 = gr.CheckboxGroup(["EATING", "PHONE_RECORDING", "PHONE_USE", "SMOKING", "SEATBELT"], label="Activity")
with gr.Row():
pitch1 = gr.Number(0, label="Pitch")
roll1 = gr.Number(0, label="Roll")
yaw1 = gr.Number(0, label="Yaw")
quality1 = gr.Number(0, label="Quality")
with gr.Column(variant="panel"):
gr.Markdown("<b>Image 2<b/>")
liveness2 = gr.CheckboxGroup(["GENUINE", "FAKE"], label="Liveness")
age2 = gr.Number(0, label="Age")
gender2 = gr.CheckboxGroup(["MALE", "FEMALE"], label="Gender")
emotion2 = gr.CheckboxGroup(["HAPPINESS", "ANGER", "FEAR", "NEUTRAL", "SADNESS", "SURPRISE"], label="Emotion")
ethnicity2 = gr.CheckboxGroup(["ASIAN", "BLACK", "CAUCASIAN", "EAST_INDIAN"], label="Ethnicity")
mask2 = gr.CheckboxGroup(["LOWER_FACE_MASK", "FULL_FACE_MASK", "OTHER_MASK", "GLASSES", "SUNGLASSES"], label="Mask & Glasses")
eye2 = gr.CheckboxGroup(["LEFT", "RIGHT"], label="Eye Open")
facehair2 = gr.CheckboxGroup(["BEARD", "BRISTLE", "MUSTACHE", "SHAVED"], label="Facial Hair")
haircolor2 = gr.CheckboxGroup(["BLACK", "BLOND", "BROWN"], label="Hair Color")
hairtype2 = gr.CheckboxGroup(["BALD", "SHORT", "MEDIUM", "LONG"], label="Hair Type")
headwear2 = gr.CheckboxGroup(["B_CAP", "CAP", "HAT", "HELMET", "HOOD"], label="Head Wear")
activity2 = gr.CheckboxGroup(["EATING", "PHONE_RECORDING", "PHONE_USE", "SMOKING", "SEATBELT"], label="Activity")
with gr.Row():
pitch2 = gr.Number(0, label="Pitch")
roll2 = gr.Number(0, label="Roll")
yaw2 = gr.Number(0, label="Yaw")
quality2 = gr.Number(0, label="Quality")
compare_result_output = gr.JSON(label='Result', visible=False)
compare_face_button.click(compare_face, inputs=[compare_face_input1, compare_face_input2], outputs=[compare_result_output, compare_face_output, compare_result,
liveness1, age1, gender1, emotion1, ethnicity1, mask1, eye1, facehair1, haircolor1, hairtype1, headwear1, activity1, pitch1, roll1, yaw1, quality1,
liveness2, age2, gender2, emotion2, ethnicity2, mask2, eye2, facehair2, haircolor2, hairtype2, headwear2, activity2, pitch2, roll2, yaw2, quality2])
demo.launch(server_name="0.0.0.0", server_port=7860, show_api=False) |