File size: 6,971 Bytes
483fb8b
 
 
 
801bb4d
483fb8b
 
9c5fb04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483fb8b
801bb4d
 
9c5fb04
 
 
 
 
 
 
 
 
 
 
 
 
483fb8b
 
7a3f21a
 
 
801bb4d
e5ea4ad
9c5fb04
801bb4d
 
9c5fb04
483fb8b
 
 
 
7a3f21a
 
801bb4d
7a3f21a
 
 
 
 
 
 
 
 
801bb4d
 
7a3f21a
801bb4d
7a3f21a
e5ea4ad
7a3f21a
801bb4d
7a3f21a
 
 
801bb4d
 
7a3f21a
 
 
 
801bb4d
 
 
7a3f21a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
801bb4d
7a3f21a
 
 
 
 
 
801bb4d
 
7a3f21a
 
483fb8b
 
 
 
 
 
 
7a3f21a
 
483fb8b
 
9c5fb04
 
7a3f21a
 
 
 
 
483fb8b
7a3f21a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import gradio as gr
import cv2
import numpy as np
import torch
from ultralytics import SAM, YOLOWorld
import os

# Initialize models with proper error handling and auto-download
def initialize_models():
    """Initialize models with proper error handling."""
    try:
        sam_model = SAM("mobile_sam.pt")  # This auto-downloads
        print("✅ SAM model loaded successfully")
    except Exception as e:
        print(f"❌ Error loading SAM model: {e}")
        raise
    
    try:
        # Try different YOLO-World model names that auto-download
        yolo_model = YOLOWorld("yolov8s-world.pt")  # Small world model (auto-downloads)
        print("✅ YOLO-World model loaded successfully")
        return sam_model, yolo_model
    except Exception as e:
        print(f"❌ Error loading YOLO-World model: {e}")
        try:
            # Fallback to regular YOLO if YOLO-World fails
            from ultralytics import YOLO
            yolo_model = YOLO("yolov8n.pt")  # Regular YOLO nano model
            print("⚠️ Using regular YOLO model as fallback")
            return sam_model, yolo_model
        except Exception as e2:
            print(f"❌ Fallback YOLO model also failed: {e2}")
            raise

sam_model, yolo_model = initialize_models()

def detect_motorcycles(first_frame, prompt="motorcycle"):
    """Detect motorcycles in the first frame using YOLO-World and return bounding boxes."""
    try:
        # Check if it's YOLO-World model
        if hasattr(yolo_model, 'set_classes'):
            yolo_model.set_classes([prompt])
            results = yolo_model.predict(first_frame, device="cpu", max_det=2, imgsz=320, verbose=False)
        else:
            # Regular YOLO model - can't set custom classes, will detect all objects
            results = yolo_model.predict(first_frame, device="cpu", max_det=5, imgsz=320, verbose=False)
            print("⚠️ Using regular YOLO - detecting all objects, not just the specified prompt")
    except Exception as e:
        print(f"Error in YOLO prediction: {e}")
        return np.array([])
    
    boxes = []
    for result in results:
        if result.boxes is not None and len(result.boxes.xyxy) > 0:
            boxes.extend(result.boxes.xyxy.cpu().numpy())
    
    if len(boxes) > 0:
        boxes = np.vstack(boxes)
        print(f"Detected {len(boxes)} objects")
    else:
        boxes = np.array([])
        print("No objects detected")
    return boxes

def segment_and_highlight_video(video_path, prompt="motorcycle", highlight_color="red"):
    """Segment and highlight motorcycles in a video using SAM 2 and YOLO-World."""
    
    # Get video properties first
    cap = cv2.VideoCapture(video_path)
    original_fps = cap.get(cv2.CAP_PROP_FPS)
    original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Target resolution
    target_width, target_height = 320, 180
    
    # Get first frame for detection
    ret, first_frame = cap.read()
    if not ret:
        cap.release()
        raise ValueError("Could not read first frame from video.")
    
    # Resize first frame for detection
    first_frame_resized = cv2.resize(first_frame, (target_width, target_height))
    cap.release()
    
    # Detect boxes in resized first frame
    boxes = detect_motorcycles(first_frame_resized, prompt)
    if len(boxes) == 0:
        return video_path  # No motorcycles detected, return original
    
    # Boxes are already in the target resolution coordinate system
    print(f"Detected {len(boxes)} objects with boxes: {boxes}")
    
    # Color map for highlighting
    color_map = {"red": (0, 0, 255), "green": (0, 255, 0), "blue": (255, 0, 0)}
    highlight_rgb = color_map.get(highlight_color.lower(), (0, 0, 255))
    
    # Process video frame by frame instead of using SAM's video prediction
    cap = cv2.VideoCapture(video_path)
    output_path = "output.mp4"
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), original_fps, (target_width, target_height))
    
    frame_count = 0
    max_frames = min(total_frames, 150)  # Limit to 150 frames (~5 seconds at 30fps)
    
    print(f"Processing {max_frames} frames...")
    
    while frame_count < max_frames:
        ret, frame = cap.read()
        if not ret:
            break
            
        # Resize frame to target resolution
        frame_resized = cv2.resize(frame, (target_width, target_height))
        
        try:
            # Run SAM on individual frame with explicit resolution control
            sam_results = sam_model.predict(
                source=frame_resized, 
                bboxes=boxes, 
                device="cpu",
                imgsz=320,  # Force SAM resolution
                conf=0.25,
                verbose=False
            )
            
            highlighted_frame = frame_resized.copy()
            
            # Process SAM results
            if len(sam_results) > 0 and sam_results[0].masks is not None:
                masks = sam_results[0].masks.data.cpu().numpy()
                
                if len(masks) > 0:
                    # Combine all masks
                    combined_mask = np.any(masks, axis=0).astype(np.uint8)
                    
                    # Create colored overlay
                    overlay = np.zeros_like(frame_resized)
                    overlay[combined_mask == 1] = highlight_rgb
                    
                    # Blend with original frame
                    highlighted_frame = cv2.addWeighted(frame_resized, 0.7, overlay, 0.3, 0)
                    
        except Exception as e:
            print(f"Error processing frame {frame_count}: {e}")
            highlighted_frame = frame_resized
        
        out.write(highlighted_frame)
        frame_count += 1
        
        # Progress indicator
        if frame_count % 30 == 0:
            print(f"Processed {frame_count}/{max_frames} frames")
    
    cap.release()
    out.release()
    
    print(f"Video processing complete. Output saved to {output_path}")
    return output_path

# Gradio interface
iface = gr.Interface(
    fn=segment_and_highlight_video,
    inputs=[
        gr.Video(label="Upload Video"),
        gr.Textbox(label="Prompt", placeholder="e.g., motorcycle", value="motorcycle"),
        gr.Dropdown(choices=["red", "green", "blue"], label="Highlight Color", value="red")
    ],
    outputs=gr.Video(label="Highlighted Video"),
    title="Video Segmentation with MobileSAM and YOLO (CPU Optimized)",
    description="Upload a short video (5-10 seconds), specify a text prompt (e.g., 'motorcycle'), and choose a highlight color. Uses MobileSAM + YOLO for CPU processing at 320x180 resolution.",
    examples=[
        [None, "motorcycle", "red"],
        [None, "car", "green"],
        [None, "person", "blue"]
    ]
)

if __name__ == "__main__":
    iface.launch()