Spaces:
Runtime error
Runtime error
Limit frames, optimize code
Browse filesSAM Resolution Problem: The original code was calling sam_model.predict(source=video_path, ...) which processes the entire video at SAM's default resolution (1024). I changed this to process individual frames with explicit imgsz=320 parameter.
Inefficient Frame Processing: Your code was opening a new VideoCapture for each frame in the loop (cv2.VideoCapture(video_path).read()[1]), which is extremely inefficient.
Missing Resolution Control for YOLO: Added imgsz=320 to the YOLO prediction to ensure consistent resolution.
Box Scaling Issues: Removed unnecessary box scaling since we're working consistently in the target resolution.
Memory Leaks: Fixed VideoCapture resource management
app.py
CHANGED
@@ -12,10 +12,12 @@ yolo_model = YOLOWorld("yolov8n-world.pt") # Nano model for faster detection
|
|
12 |
def detect_motorcycles(first_frame, prompt="motorcycle"):
|
13 |
"""Detect motorcycles in the first frame using YOLO-World and return bounding boxes."""
|
14 |
yolo_model.set_classes([prompt])
|
15 |
-
results = yolo_model.predict(first_frame, device="cpu", max_det=2) #
|
16 |
boxes = []
|
17 |
for result in results:
|
18 |
-
boxes
|
|
|
|
|
19 |
if len(boxes) > 0:
|
20 |
boxes = np.vstack(boxes)
|
21 |
else:
|
@@ -24,64 +26,100 @@ def detect_motorcycles(first_frame, prompt="motorcycle"):
|
|
24 |
|
25 |
def segment_and_highlight_video(video_path, prompt="motorcycle", highlight_color="red"):
|
26 |
"""Segment and highlight motorcycles in a video using SAM 2 and YOLO-World."""
|
27 |
-
|
|
|
28 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
ret, first_frame = cap.read()
|
30 |
if not ret:
|
|
|
31 |
raise ValueError("Could not read first frame from video.")
|
|
|
32 |
# Resize first frame for detection
|
33 |
-
|
34 |
cap.release()
|
35 |
-
|
36 |
-
# Detect boxes in first frame
|
37 |
-
boxes = detect_motorcycles(
|
38 |
-
|
39 |
if len(boxes) == 0:
|
40 |
return video_path # No motorcycles detected, return original
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
boxes = boxes * [scale_x, scale_y, scale_x, scale_y]
|
46 |
-
|
47 |
-
# Run SAM on video with boxes prompt
|
48 |
-
results = sam_model.predict(source=video_path, bboxes=boxes, stream=True, imgsz=320) # Stream and low resolution
|
49 |
-
|
50 |
-
# Prepare output video
|
51 |
-
cap = cv2.VideoCapture(video_path)
|
52 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
53 |
-
width = 320
|
54 |
-
height = 180
|
55 |
-
output_path = "output.mp4"
|
56 |
-
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
57 |
-
|
58 |
# Color map for highlighting
|
59 |
color_map = {"red": (0, 0, 255), "green": (0, 255, 0), "blue": (255, 0, 0)}
|
60 |
highlight_rgb = color_map.get(highlight_color.lower(), (0, 0, 255))
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
out.write(highlighted_frame)
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
cap.release()
|
83 |
out.release()
|
84 |
-
|
|
|
85 |
return output_path
|
86 |
|
87 |
# Gradio interface
|
@@ -89,11 +127,18 @@ iface = gr.Interface(
|
|
89 |
fn=segment_and_highlight_video,
|
90 |
inputs=[
|
91 |
gr.Video(label="Upload Video"),
|
92 |
-
gr.Textbox(label="Prompt", placeholder="e.g., motorcycle"),
|
93 |
-
gr.Dropdown(choices=["red", "green", "blue"], label="Highlight Color")
|
94 |
],
|
95 |
outputs=gr.Video(label="Highlighted Video"),
|
96 |
-
title="Video Segmentation with MobileSAM and YOLO-World (CPU)",
|
97 |
-
description="Upload a short video (5-10 seconds), specify a text prompt (e.g., 'motorcycle'), and choose a highlight color. Optimized for CPU."
|
|
|
|
|
|
|
|
|
|
|
98 |
)
|
99 |
-
|
|
|
|
|
|
12 |
def detect_motorcycles(first_frame, prompt="motorcycle"):
|
13 |
"""Detect motorcycles in the first frame using YOLO-World and return bounding boxes."""
|
14 |
yolo_model.set_classes([prompt])
|
15 |
+
results = yolo_model.predict(first_frame, device="cpu", max_det=2, imgsz=320) # Force YOLO to use 320 resolution
|
16 |
boxes = []
|
17 |
for result in results:
|
18 |
+
if result.boxes is not None and len(result.boxes.xyxy) > 0:
|
19 |
+
boxes.extend(result.boxes.xyxy.cpu().numpy())
|
20 |
+
|
21 |
if len(boxes) > 0:
|
22 |
boxes = np.vstack(boxes)
|
23 |
else:
|
|
|
26 |
|
27 |
def segment_and_highlight_video(video_path, prompt="motorcycle", highlight_color="red"):
|
28 |
"""Segment and highlight motorcycles in a video using SAM 2 and YOLO-World."""
|
29 |
+
|
30 |
+
# Get video properties first
|
31 |
cap = cv2.VideoCapture(video_path)
|
32 |
+
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
33 |
+
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
34 |
+
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
35 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
36 |
+
|
37 |
+
# Target resolution
|
38 |
+
target_width, target_height = 320, 180
|
39 |
+
|
40 |
+
# Get first frame for detection
|
41 |
ret, first_frame = cap.read()
|
42 |
if not ret:
|
43 |
+
cap.release()
|
44 |
raise ValueError("Could not read first frame from video.")
|
45 |
+
|
46 |
# Resize first frame for detection
|
47 |
+
first_frame_resized = cv2.resize(first_frame, (target_width, target_height))
|
48 |
cap.release()
|
49 |
+
|
50 |
+
# Detect boxes in resized first frame
|
51 |
+
boxes = detect_motorcycles(first_frame_resized, prompt)
|
|
|
52 |
if len(boxes) == 0:
|
53 |
return video_path # No motorcycles detected, return original
|
54 |
+
|
55 |
+
# Boxes are already in the target resolution coordinate system
|
56 |
+
print(f"Detected {len(boxes)} objects with boxes: {boxes}")
|
57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# Color map for highlighting
|
59 |
color_map = {"red": (0, 0, 255), "green": (0, 255, 0), "blue": (255, 0, 0)}
|
60 |
highlight_rgb = color_map.get(highlight_color.lower(), (0, 0, 255))
|
61 |
+
|
62 |
+
# Process video frame by frame instead of using SAM's video prediction
|
63 |
+
cap = cv2.VideoCapture(video_path)
|
64 |
+
output_path = "output.mp4"
|
65 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), original_fps, (target_width, target_height))
|
66 |
+
|
67 |
+
frame_count = 0
|
68 |
+
max_frames = min(total_frames, 150) # Limit to 150 frames (~5 seconds at 30fps)
|
69 |
+
|
70 |
+
print(f"Processing {max_frames} frames...")
|
71 |
+
|
72 |
+
while frame_count < max_frames:
|
73 |
+
ret, frame = cap.read()
|
74 |
+
if not ret:
|
75 |
+
break
|
76 |
+
|
77 |
+
# Resize frame to target resolution
|
78 |
+
frame_resized = cv2.resize(frame, (target_width, target_height))
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Run SAM on individual frame with explicit resolution control
|
82 |
+
sam_results = sam_model.predict(
|
83 |
+
source=frame_resized,
|
84 |
+
bboxes=boxes,
|
85 |
+
device="cpu",
|
86 |
+
imgsz=320, # Force SAM resolution
|
87 |
+
conf=0.25,
|
88 |
+
verbose=False
|
89 |
+
)
|
90 |
+
|
91 |
+
highlighted_frame = frame_resized.copy()
|
92 |
+
|
93 |
+
# Process SAM results
|
94 |
+
if len(sam_results) > 0 and sam_results[0].masks is not None:
|
95 |
+
masks = sam_results[0].masks.data.cpu().numpy()
|
96 |
+
|
97 |
+
if len(masks) > 0:
|
98 |
+
# Combine all masks
|
99 |
+
combined_mask = np.any(masks, axis=0).astype(np.uint8)
|
100 |
+
|
101 |
+
# Create colored overlay
|
102 |
+
overlay = np.zeros_like(frame_resized)
|
103 |
+
overlay[combined_mask == 1] = highlight_rgb
|
104 |
+
|
105 |
+
# Blend with original frame
|
106 |
+
highlighted_frame = cv2.addWeighted(frame_resized, 0.7, overlay, 0.3, 0)
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error processing frame {frame_count}: {e}")
|
110 |
+
highlighted_frame = frame_resized
|
111 |
+
|
112 |
out.write(highlighted_frame)
|
113 |
+
frame_count += 1
|
114 |
+
|
115 |
+
# Progress indicator
|
116 |
+
if frame_count % 30 == 0:
|
117 |
+
print(f"Processed {frame_count}/{max_frames} frames")
|
118 |
+
|
119 |
cap.release()
|
120 |
out.release()
|
121 |
+
|
122 |
+
print(f"Video processing complete. Output saved to {output_path}")
|
123 |
return output_path
|
124 |
|
125 |
# Gradio interface
|
|
|
127 |
fn=segment_and_highlight_video,
|
128 |
inputs=[
|
129 |
gr.Video(label="Upload Video"),
|
130 |
+
gr.Textbox(label="Prompt", placeholder="e.g., motorcycle", value="motorcycle"),
|
131 |
+
gr.Dropdown(choices=["red", "green", "blue"], label="Highlight Color", value="red")
|
132 |
],
|
133 |
outputs=gr.Video(label="Highlighted Video"),
|
134 |
+
title="Video Segmentation with MobileSAM and YOLO-World (CPU Optimized)",
|
135 |
+
description="Upload a short video (5-10 seconds), specify a text prompt (e.g., 'motorcycle'), and choose a highlight color. Optimized for CPU with 320x180 resolution.",
|
136 |
+
examples=[
|
137 |
+
[None, "motorcycle", "red"],
|
138 |
+
[None, "car", "green"],
|
139 |
+
[None, "person", "blue"]
|
140 |
+
]
|
141 |
)
|
142 |
+
|
143 |
+
if __name__ == "__main__":
|
144 |
+
iface.launch()
|