Spaces:
Sleeping
Sleeping
File size: 9,753 Bytes
88ad01d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from typing import Dict, Tuple, Union
import numpy as np
import torch
from scipy.optimize import linear_sum_assignment
def average_precision(recalls: np.ndarray,
precisions: np.ndarray,
mode: str = 'area') -> np.ndarray:
"""Calculate average precision (for single or multiple scales).
Args:
recalls (np.ndarray): Recalls with shape of (num_scales, num_dets)
or (num_dets, ).
precisions (np.ndarray): Precisions with shape of
(num_scales, num_dets) or (num_dets, ).
mode (str): 'area' or '11points', 'area' means calculating the area
under precision-recall curve, '11points' means calculating
the average precision of recalls at [0, 0.1, ..., 1]
Defaults to 'area'.
Returns:
np.ndarray: Calculated average precision.
"""
if recalls.ndim == 1:
recalls = recalls[np.newaxis, :]
precisions = precisions[np.newaxis, :]
assert recalls.shape == precisions.shape
assert recalls.ndim == 2
num_scales = recalls.shape[0]
ap = np.zeros(num_scales, dtype=np.float32)
if mode == 'area':
zeros = np.zeros((num_scales, 1), dtype=recalls.dtype)
ones = np.ones((num_scales, 1), dtype=recalls.dtype)
mrec = np.hstack((zeros, recalls, ones))
mpre = np.hstack((zeros, precisions, zeros))
for i in range(mpre.shape[1] - 1, 0, -1):
mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i])
for i in range(num_scales):
ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0]
ap[i] = np.sum(
(mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])
elif mode == '11points':
for i in range(num_scales):
for thr in np.arange(0, 1 + 1e-3, 0.1):
precs = precisions[i, recalls[i, :] >= thr]
prec = precs.max() if precs.size > 0 else 0
ap[i] += prec
ap /= 11
else:
raise ValueError(
'Unrecognized mode, only "area" and "11points" are supported')
return ap
def get_f1_scores(iou_matrix: Union[np.ndarray, torch.tensor],
iou_threshold) -> float:
"""Refer to the algorithm in Multi3DRefer to compute the F1 score.
Args:
iou_matrix (ndarray/tensor):
The iou matrix of the predictions and ground truths with
shape (num_preds , num_gts)
iou_threshold (float): 0.25/0.5
Returns:
float: the f1 score as the result
"""
iou_thr_tp = 0
pred_bboxes_count, gt_bboxes_count = iou_matrix.shape
square_matrix_len = max(gt_bboxes_count, pred_bboxes_count)
iou_matrix_fill = np.zeros(shape=(square_matrix_len, square_matrix_len),
dtype=np.float32)
iou_matrix_fill[:pred_bboxes_count, :gt_bboxes_count] = iou_matrix
# apply matching algorithm
row_idx, col_idx = linear_sum_assignment(iou_matrix_fill * -1)
# iterate matched pairs, check ious
for i in range(pred_bboxes_count):
iou = iou_matrix[row_idx[i], col_idx[i]]
# calculate true positives
if iou >= iou_threshold:
iou_thr_tp += 1
# calculate precision, recall and f1-score for the current scene
f1_score = 2 * iou_thr_tp / (pred_bboxes_count + gt_bboxes_count)
return f1_score
def __get_fp_tp_array__(iou_array: Union[np.ndarray, torch.tensor],
iou_threshold: float) \
-> Tuple[np.ndarray, np.ndarray]:
"""Compute the False-positive and True-positive array for each prediction.
Args:
iou_array (ndarray/tensor):
the iou matrix of the predictions and ground truths
(shape num_preds, num_gts)
iou_threshold (float): 0.25/0.5
Returns:
np.ndarray, np.ndarray: (len(preds)),
the false-positive and true-positive array for each prediction.
"""
gt_matched_records = np.zeros((len(iou_array[0])), dtype=bool)
tp_thr = np.zeros((len(iou_array)))
fp_thr = np.zeros((len(iou_array)))
for d, _ in enumerate(range(len(iou_array))):
iou_max = -np.inf
cur_iou = iou_array[d]
num_gts = cur_iou.shape[0]
if num_gts > 0:
for j in range(num_gts):
iou = cur_iou[j]
if iou > iou_max:
iou_max = iou
jmax = j
if iou_max >= iou_threshold:
if not gt_matched_records[jmax]:
gt_matched_records[jmax] = True
tp_thr[d] = 1.0
else:
fp_thr[d] = 1.0
else:
fp_thr[d] = 1.0
return fp_thr, tp_thr
def subset_get_average_precision(subset_results: dict,
iou_thr: float)\
-> Tuple[np.ndarray, np.ndarray]:
"""Return the average precision and max recall for a given iou array,
"subset" version while the num_gt of each sample may differ.
Args:
subset_results (dict):
The results, consisting of scores, sample_indices, ious.
sample_indices means which sample the prediction belongs to.
iou_threshold (float): 0.25/0.5
Returns:
Tuple[np.ndarray, np.ndarray]: the average precision and max recall.
"""
confidences = subset_results['scores']
sample_indices = subset_results['sample_indices']
ious = subset_results['ious']
gt_matched_records = {}
total_gt_boxes = 0
for i, sample_idx in enumerate(sample_indices):
if sample_idx not in gt_matched_records:
gt_matched_records[sample_idx] = np.zeros((len(ious[i]), ),
dtype=bool)
total_gt_boxes += ious[i].shape[0]
confidences = np.array(confidences)
sorted_inds = np.argsort(-confidences)
sample_indices = [sample_indices[i] for i in sorted_inds]
ious = [ious[i] for i in sorted_inds]
tp_thr = np.zeros(len(sample_indices))
fp_thr = np.zeros(len(sample_indices))
for d, sample_idx in enumerate(sample_indices):
iou_max = -np.inf
cur_iou = ious[d]
num_gts = cur_iou.shape[0]
if num_gts > 0:
for j in range(num_gts):
iou = cur_iou[j]
if iou > iou_max:
iou_max = iou
jmax = j
if iou_max >= iou_thr:
if not gt_matched_records[sample_idx][jmax]:
gt_matched_records[sample_idx][jmax] = True
tp_thr[d] = 1.0
else:
fp_thr[d] = 1.0
else:
fp_thr[d] = 1.0
fp = np.cumsum(fp_thr)
tp = np.cumsum(tp_thr)
recall = tp / float(total_gt_boxes)
precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
return average_precision(recall, precision), np.max(recall)
def get_average_precision(iou_array: np.ndarray, iou_threshold: float) \
-> Tuple[np.ndarray, np.ndarray]:
"""Return the average precision and max recall for a given iou array.
Args:
iou_array (ndarray/tensor):
The iou matrix of the predictions and ground truths
(shape len(preds)*len(gts))
iou_threshold (float): 0.25/0.5
Returns:
Tuple[np.ndarray, np.ndarray]: the average precision and max recall.
"""
fp, tp = __get_fp_tp_array__(iou_array, iou_threshold)
fp_cum = np.cumsum(fp)
tp_cum = np.cumsum(tp)
recall = tp_cum / float(iou_array.shape[1])
precision = tp_cum / np.maximum(tp_cum + fp_cum, np.finfo(np.float64).eps)
return average_precision(recall, precision), np.max(recall)
def get_general_topk_scores(iou_array: Union[np.ndarray, torch.tensor],
iou_threshold: float,
mode: str = 'sigma') -> Dict[str, float]:
"""Compute the multi-topk metric, we provide two modes.
Args:
iou_array (ndarray/tensor):
the iou matrix of the predictions and ground truths
(shape len(preds)*len(gts))
iou_threshold (float): 0.25/0.5
mode (str): 'sigma'/'simple'
"simple": 1/N * Hit(min(N*k,len(pred)))
"sigma": 1/N * Sigma [Hit(min(n*k,len(pred)))>=n] n = 1~N
Hit(M) return the number of gtound truths hitted by
the first M predictions.
N = the number of gtound truths
Default to 'sigma'.
Returns:
Dict[str,float]: the score of multi-topk metric.
"""
assert mode in ['sigma', 'simple']
topk_scores = []
gt_matched_records = np.zeros(len(iou_array[0]))
num_gt = len(gt_matched_records)
for d, _ in enumerate(range(len(iou_array))):
iou_max = -np.inf
cur_iou = iou_array[d]
for j in range(len(iou_array[d])):
iou = cur_iou[j]
if iou > iou_max:
iou_max = iou
j_max = j
if iou_max >= iou_threshold:
gt_matched_records[j_max] = True
topk_scores.append(gt_matched_records.copy())
topk_results = {}
for topk in [1, 3, 5, 10]:
if mode == 'sigma':
scores = [
int(
np.sum(topk_scores[min(n * topk, len(topk_scores)) -
1]) >= n) for n in range(1, num_gt + 1)
]
result = np.sum(scores) / num_gt
else:
query_index = min(num_gt * topk, len(topk_scores)) - 1
result = np.sum(topk_scores[query_index]) / num_gt
topk_results[f'gTop-{topk}@{iou_threshold}'] = result
return topk_results
|