Spaces:
Sleeping
Sleeping
Upload 7 files
Browse files- app.py +32 -1
- evaluate.py +7 -12
- leaderboard.csv +12 -0
- mmscan_utils/box_metric.py +277 -0
- mmscan_utils/box_utils.py +1079 -0
- test_annotations_mmscan.json +0 -0
- vg_evaluator.py +361 -0
app.py
CHANGED
@@ -4,8 +4,39 @@ import pandas as pd
|
|
4 |
import os
|
5 |
|
6 |
LEADERBOARD_CSV = "leaderboard.csv"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def evaluate_and_update(pred_file, username):
|
|
|
|
|
9 |
score = run_evaluation(pred_file.name)
|
10 |
if os.path.exists(LEADERBOARD_CSV):
|
11 |
df = pd.read_csv(LEADERBOARD_CSV)
|
@@ -19,7 +50,7 @@ def evaluate_and_update(pred_file, username):
|
|
19 |
with gr.Blocks() as demo:
|
20 |
gr.Markdown("# 🧊 3D IoU Challenge")
|
21 |
name = gr.Textbox(label="Username")
|
22 |
-
upload = gr.File(label="Upload your prediction (.
|
23 |
score_text = gr.Textbox(label="Evaluation score")
|
24 |
leaderboard = gr.Dataframe(headers=["Name", "Score"], interactive=False)
|
25 |
|
|
|
4 |
import os
|
5 |
|
6 |
LEADERBOARD_CSV = "leaderboard.csv"
|
7 |
+
import pandas as pd
|
8 |
+
import os
|
9 |
+
from datetime import datetime, date
|
10 |
+
|
11 |
+
SUBMIT_RECORD = "submissions.csv"
|
12 |
+
MAX_SUBMIT_PER_DAY = 2
|
13 |
+
|
14 |
+
def check_submission_limit(username):
|
15 |
+
if not os.path.exists(SUBMIT_RECORD):
|
16 |
+
return True # 没有人提交过
|
17 |
+
|
18 |
+
df = pd.read_csv(SUBMIT_RECORD)
|
19 |
+
today = date.today()
|
20 |
+
|
21 |
+
user_today_subs = df[
|
22 |
+
(df["username"] == username) &
|
23 |
+
(pd.to_datetime(df["timestamp"]).dt.date == today)
|
24 |
+
]
|
25 |
+
|
26 |
+
return len(user_today_subs) < MAX_SUBMIT_PER_DAY
|
27 |
+
|
28 |
+
def record_submission(username):
|
29 |
+
now = datetime.now().isoformat()
|
30 |
+
if os.path.exists(SUBMIT_RECORD):
|
31 |
+
df = pd.read_csv(SUBMIT_RECORD)
|
32 |
+
else:
|
33 |
+
df = pd.DataFrame(columns=["username", "timestamp"])
|
34 |
+
df.loc[len(df)] = {"username": username, "timestamp": now}
|
35 |
+
df.to_csv(SUBMIT_RECORD, index=False)
|
36 |
|
37 |
def evaluate_and_update(pred_file, username):
|
38 |
+
if not check_submission_limit(username):
|
39 |
+
return "⛔ Submission limit exceeded for today.", pd.read_csv(LEADERBOARD_CSV)
|
40 |
score = run_evaluation(pred_file.name)
|
41 |
if os.path.exists(LEADERBOARD_CSV):
|
42 |
df = pd.read_csv(LEADERBOARD_CSV)
|
|
|
50 |
with gr.Blocks() as demo:
|
51 |
gr.Markdown("# 🧊 3D IoU Challenge")
|
52 |
name = gr.Textbox(label="Username")
|
53 |
+
upload = gr.File(label="Upload your prediction (.json)")
|
54 |
score_text = gr.Textbox(label="Evaluation score")
|
55 |
leaderboard = gr.Dataframe(headers=["Name", "Score"], interactive=False)
|
56 |
|
evaluate.py
CHANGED
@@ -1,16 +1,11 @@
|
|
1 |
-
from datasets import load_dataset
|
2 |
import numpy as np
|
3 |
-
import
|
4 |
-
from
|
5 |
|
6 |
def run_evaluation(pred_path):
|
7 |
-
|
8 |
-
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
gt_boxes = torch.tensor(dataset[0]["boxes"]).float().unsqueeze(0)
|
12 |
-
|
13 |
-
iou_matrix, _ = box3d_overlap(pred_boxes, gt_boxes)
|
14 |
-
iou = iou_matrix.diagonal(dim1=1, dim2=2).mean()
|
15 |
-
|
16 |
-
return float(iou)
|
|
|
|
|
1 |
import numpy as np
|
2 |
+
import json
|
3 |
+
from vg_evaluator import evaluation_for_challenge
|
4 |
|
5 |
def run_evaluation(pred_path):
|
6 |
+
pred_ = json.load(open(pred_path))
|
7 |
+
gt_ = json.load(open('test_annotations_mmscan.json'))
|
8 |
+
results = evaluation_for_challenge(gt_,pred_)
|
9 |
+
|
10 |
|
11 |
+
return results['gTop-[email protected]']
|
|
|
|
|
|
|
|
|
|
|
|
leaderboard.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name,score
|
2 |
+
aaa,0.1947003033781529
|
3 |
+
eee,0.0
|
4 |
+
sss,0.0
|
5 |
+
sss,0.0
|
6 |
+
sss,0.0
|
7 |
+
sss,0.0
|
8 |
+
sss,0.0
|
9 |
+
sss,0.0
|
10 |
+
sss,0.0
|
11 |
+
bbb,0.0
|
12 |
+
aaa,0.0
|
mmscan_utils/box_metric.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Tuple, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from scipy.optimize import linear_sum_assignment
|
6 |
+
|
7 |
+
|
8 |
+
def average_precision(recalls: np.ndarray,
|
9 |
+
precisions: np.ndarray,
|
10 |
+
mode: str = 'area') -> np.ndarray:
|
11 |
+
"""Calculate average precision (for single or multiple scales).
|
12 |
+
|
13 |
+
Args:
|
14 |
+
recalls (np.ndarray): Recalls with shape of (num_scales, num_dets)
|
15 |
+
or (num_dets, ).
|
16 |
+
precisions (np.ndarray): Precisions with shape of
|
17 |
+
(num_scales, num_dets) or (num_dets, ).
|
18 |
+
mode (str): 'area' or '11points', 'area' means calculating the area
|
19 |
+
under precision-recall curve, '11points' means calculating
|
20 |
+
the average precision of recalls at [0, 0.1, ..., 1]
|
21 |
+
Defaults to 'area'.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
np.ndarray: Calculated average precision.
|
25 |
+
"""
|
26 |
+
if recalls.ndim == 1:
|
27 |
+
recalls = recalls[np.newaxis, :]
|
28 |
+
precisions = precisions[np.newaxis, :]
|
29 |
+
|
30 |
+
assert recalls.shape == precisions.shape
|
31 |
+
assert recalls.ndim == 2
|
32 |
+
|
33 |
+
num_scales = recalls.shape[0]
|
34 |
+
ap = np.zeros(num_scales, dtype=np.float32)
|
35 |
+
|
36 |
+
if mode == 'area':
|
37 |
+
zeros = np.zeros((num_scales, 1), dtype=recalls.dtype)
|
38 |
+
ones = np.ones((num_scales, 1), dtype=recalls.dtype)
|
39 |
+
mrec = np.hstack((zeros, recalls, ones))
|
40 |
+
mpre = np.hstack((zeros, precisions, zeros))
|
41 |
+
for i in range(mpre.shape[1] - 1, 0, -1):
|
42 |
+
mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i])
|
43 |
+
for i in range(num_scales):
|
44 |
+
ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0]
|
45 |
+
ap[i] = np.sum(
|
46 |
+
(mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])
|
47 |
+
|
48 |
+
elif mode == '11points':
|
49 |
+
for i in range(num_scales):
|
50 |
+
for thr in np.arange(0, 1 + 1e-3, 0.1):
|
51 |
+
precs = precisions[i, recalls[i, :] >= thr]
|
52 |
+
prec = precs.max() if precs.size > 0 else 0
|
53 |
+
ap[i] += prec
|
54 |
+
ap /= 11
|
55 |
+
else:
|
56 |
+
raise ValueError(
|
57 |
+
'Unrecognized mode, only "area" and "11points" are supported')
|
58 |
+
return ap
|
59 |
+
|
60 |
+
|
61 |
+
def get_f1_scores(iou_matrix: Union[np.ndarray, torch.tensor],
|
62 |
+
iou_threshold) -> float:
|
63 |
+
"""Refer to the algorithm in Multi3DRefer to compute the F1 score.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
iou_matrix (ndarray/tensor):
|
67 |
+
The iou matrix of the predictions and ground truths with
|
68 |
+
shape (num_preds , num_gts)
|
69 |
+
iou_threshold (float): 0.25/0.5
|
70 |
+
|
71 |
+
Returns:
|
72 |
+
float: the f1 score as the result
|
73 |
+
"""
|
74 |
+
iou_thr_tp = 0
|
75 |
+
pred_bboxes_count, gt_bboxes_count = iou_matrix.shape
|
76 |
+
|
77 |
+
square_matrix_len = max(gt_bboxes_count, pred_bboxes_count)
|
78 |
+
iou_matrix_fill = np.zeros(shape=(square_matrix_len, square_matrix_len),
|
79 |
+
dtype=np.float32)
|
80 |
+
iou_matrix_fill[:pred_bboxes_count, :gt_bboxes_count] = iou_matrix
|
81 |
+
|
82 |
+
# apply matching algorithm
|
83 |
+
row_idx, col_idx = linear_sum_assignment(iou_matrix_fill * -1)
|
84 |
+
|
85 |
+
# iterate matched pairs, check ious
|
86 |
+
for i in range(pred_bboxes_count):
|
87 |
+
iou = iou_matrix[row_idx[i], col_idx[i]]
|
88 |
+
# calculate true positives
|
89 |
+
if iou >= iou_threshold:
|
90 |
+
iou_thr_tp += 1
|
91 |
+
|
92 |
+
# calculate precision, recall and f1-score for the current scene
|
93 |
+
f1_score = 2 * iou_thr_tp / (pred_bboxes_count + gt_bboxes_count)
|
94 |
+
|
95 |
+
return f1_score
|
96 |
+
|
97 |
+
|
98 |
+
def __get_fp_tp_array__(iou_array: Union[np.ndarray, torch.tensor],
|
99 |
+
iou_threshold: float) \
|
100 |
+
-> Tuple[np.ndarray, np.ndarray]:
|
101 |
+
"""Compute the False-positive and True-positive array for each prediction.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
iou_array (ndarray/tensor):
|
105 |
+
the iou matrix of the predictions and ground truths
|
106 |
+
(shape num_preds, num_gts)
|
107 |
+
iou_threshold (float): 0.25/0.5
|
108 |
+
|
109 |
+
Returns:
|
110 |
+
np.ndarray, np.ndarray: (len(preds)),
|
111 |
+
the false-positive and true-positive array for each prediction.
|
112 |
+
"""
|
113 |
+
gt_matched_records = np.zeros((len(iou_array[0])), dtype=bool)
|
114 |
+
tp_thr = np.zeros((len(iou_array)))
|
115 |
+
fp_thr = np.zeros((len(iou_array)))
|
116 |
+
|
117 |
+
for d, _ in enumerate(range(len(iou_array))):
|
118 |
+
iou_max = -np.inf
|
119 |
+
cur_iou = iou_array[d]
|
120 |
+
num_gts = cur_iou.shape[0]
|
121 |
+
|
122 |
+
if num_gts > 0:
|
123 |
+
for j in range(num_gts):
|
124 |
+
iou = cur_iou[j]
|
125 |
+
if iou > iou_max:
|
126 |
+
iou_max = iou
|
127 |
+
jmax = j
|
128 |
+
|
129 |
+
if iou_max >= iou_threshold:
|
130 |
+
if not gt_matched_records[jmax]:
|
131 |
+
gt_matched_records[jmax] = True
|
132 |
+
tp_thr[d] = 1.0
|
133 |
+
else:
|
134 |
+
fp_thr[d] = 1.0
|
135 |
+
else:
|
136 |
+
fp_thr[d] = 1.0
|
137 |
+
|
138 |
+
return fp_thr, tp_thr
|
139 |
+
|
140 |
+
|
141 |
+
def subset_get_average_precision(subset_results: dict,
|
142 |
+
iou_thr: float)\
|
143 |
+
-> Tuple[np.ndarray, np.ndarray]:
|
144 |
+
"""Return the average precision and max recall for a given iou array,
|
145 |
+
"subset" version while the num_gt of each sample may differ.
|
146 |
+
|
147 |
+
Args:
|
148 |
+
subset_results (dict):
|
149 |
+
The results, consisting of scores, sample_indices, ious.
|
150 |
+
sample_indices means which sample the prediction belongs to.
|
151 |
+
iou_threshold (float): 0.25/0.5
|
152 |
+
|
153 |
+
Returns:
|
154 |
+
Tuple[np.ndarray, np.ndarray]: the average precision and max recall.
|
155 |
+
"""
|
156 |
+
confidences = subset_results['scores']
|
157 |
+
sample_indices = subset_results['sample_indices']
|
158 |
+
ious = subset_results['ious']
|
159 |
+
gt_matched_records = {}
|
160 |
+
total_gt_boxes = 0
|
161 |
+
for i, sample_idx in enumerate(sample_indices):
|
162 |
+
if sample_idx not in gt_matched_records:
|
163 |
+
gt_matched_records[sample_idx] = np.zeros((len(ious[i]), ),
|
164 |
+
dtype=bool)
|
165 |
+
total_gt_boxes += ious[i].shape[0]
|
166 |
+
|
167 |
+
confidences = np.array(confidences)
|
168 |
+
sorted_inds = np.argsort(-confidences)
|
169 |
+
sample_indices = [sample_indices[i] for i in sorted_inds]
|
170 |
+
ious = [ious[i] for i in sorted_inds]
|
171 |
+
|
172 |
+
tp_thr = np.zeros(len(sample_indices))
|
173 |
+
fp_thr = np.zeros(len(sample_indices))
|
174 |
+
|
175 |
+
for d, sample_idx in enumerate(sample_indices):
|
176 |
+
iou_max = -np.inf
|
177 |
+
cur_iou = ious[d]
|
178 |
+
num_gts = cur_iou.shape[0]
|
179 |
+
if num_gts > 0:
|
180 |
+
for j in range(num_gts):
|
181 |
+
iou = cur_iou[j]
|
182 |
+
if iou > iou_max:
|
183 |
+
iou_max = iou
|
184 |
+
jmax = j
|
185 |
+
|
186 |
+
if iou_max >= iou_thr:
|
187 |
+
if not gt_matched_records[sample_idx][jmax]:
|
188 |
+
gt_matched_records[sample_idx][jmax] = True
|
189 |
+
tp_thr[d] = 1.0
|
190 |
+
else:
|
191 |
+
fp_thr[d] = 1.0
|
192 |
+
else:
|
193 |
+
fp_thr[d] = 1.0
|
194 |
+
|
195 |
+
fp = np.cumsum(fp_thr)
|
196 |
+
tp = np.cumsum(tp_thr)
|
197 |
+
recall = tp / float(total_gt_boxes)
|
198 |
+
precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
|
199 |
+
|
200 |
+
return average_precision(recall, precision), np.max(recall)
|
201 |
+
|
202 |
+
|
203 |
+
def get_average_precision(iou_array: np.ndarray, iou_threshold: float) \
|
204 |
+
-> Tuple[np.ndarray, np.ndarray]:
|
205 |
+
"""Return the average precision and max recall for a given iou array.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
iou_array (ndarray/tensor):
|
209 |
+
The iou matrix of the predictions and ground truths
|
210 |
+
(shape len(preds)*len(gts))
|
211 |
+
iou_threshold (float): 0.25/0.5
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
Tuple[np.ndarray, np.ndarray]: the average precision and max recall.
|
215 |
+
"""
|
216 |
+
fp, tp = __get_fp_tp_array__(iou_array, iou_threshold)
|
217 |
+
fp_cum = np.cumsum(fp)
|
218 |
+
tp_cum = np.cumsum(tp)
|
219 |
+
recall = tp_cum / float(iou_array.shape[1])
|
220 |
+
precision = tp_cum / np.maximum(tp_cum + fp_cum, np.finfo(np.float64).eps)
|
221 |
+
|
222 |
+
return average_precision(recall, precision), np.max(recall)
|
223 |
+
|
224 |
+
|
225 |
+
def get_general_topk_scores(iou_array: Union[np.ndarray, torch.tensor],
|
226 |
+
iou_threshold: float,
|
227 |
+
mode: str = 'sigma') -> Dict[str, float]:
|
228 |
+
"""Compute the multi-topk metric, we provide two modes.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
iou_array (ndarray/tensor):
|
232 |
+
the iou matrix of the predictions and ground truths
|
233 |
+
(shape len(preds)*len(gts))
|
234 |
+
iou_threshold (float): 0.25/0.5
|
235 |
+
mode (str): 'sigma'/'simple'
|
236 |
+
"simple": 1/N * Hit(min(N*k,len(pred)))
|
237 |
+
"sigma": 1/N * Sigma [Hit(min(n*k,len(pred)))>=n] n = 1~N
|
238 |
+
Hit(M) return the number of gtound truths hitted by
|
239 |
+
the first M predictions.
|
240 |
+
N = the number of gtound truths
|
241 |
+
Default to 'sigma'.
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
Dict[str,float]: the score of multi-topk metric.
|
245 |
+
"""
|
246 |
+
|
247 |
+
assert mode in ['sigma', 'simple']
|
248 |
+
topk_scores = []
|
249 |
+
gt_matched_records = np.zeros(len(iou_array[0]))
|
250 |
+
num_gt = len(gt_matched_records)
|
251 |
+
for d, _ in enumerate(range(len(iou_array))):
|
252 |
+
iou_max = -np.inf
|
253 |
+
cur_iou = iou_array[d]
|
254 |
+
|
255 |
+
for j in range(len(iou_array[d])):
|
256 |
+
iou = cur_iou[j]
|
257 |
+
if iou > iou_max:
|
258 |
+
iou_max = iou
|
259 |
+
j_max = j
|
260 |
+
if iou_max >= iou_threshold:
|
261 |
+
gt_matched_records[j_max] = True
|
262 |
+
topk_scores.append(gt_matched_records.copy())
|
263 |
+
|
264 |
+
topk_results = {}
|
265 |
+
for topk in [1, 3, 5, 10]:
|
266 |
+
if mode == 'sigma':
|
267 |
+
scores = [
|
268 |
+
int(
|
269 |
+
np.sum(topk_scores[min(n * topk, len(topk_scores)) -
|
270 |
+
1]) >= n) for n in range(1, num_gt + 1)
|
271 |
+
]
|
272 |
+
result = np.sum(scores) / num_gt
|
273 |
+
else:
|
274 |
+
query_index = min(num_gt * topk, len(topk_scores)) - 1
|
275 |
+
result = np.sum(topk_scores[query_index]) / num_gt
|
276 |
+
topk_results[f'gTop-{topk}@{iou_threshold}'] = result
|
277 |
+
return topk_results
|
mmscan_utils/box_utils.py
ADDED
@@ -0,0 +1,1079 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import abstractmethod
|
2 |
+
from typing import List,Iterator, Optional, Sequence, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
|
7 |
+
try:
|
8 |
+
from pytorch3d.ops import box3d_overlap
|
9 |
+
from pytorch3d.transforms import (euler_angles_to_matrix,
|
10 |
+
matrix_to_euler_angles)
|
11 |
+
except ImportError:
|
12 |
+
box3d_overlap = None
|
13 |
+
euler_angles_to_matrix = None
|
14 |
+
matrix_to_euler_angles = None
|
15 |
+
from torch import Tensor
|
16 |
+
|
17 |
+
|
18 |
+
class BaseInstance3DBoxes:
|
19 |
+
"""Base class for 3D Boxes.
|
20 |
+
|
21 |
+
Note:
|
22 |
+
The box is bottom centered, i.e. the relative position of origin in the
|
23 |
+
box is (0.5, 0.5, 0).
|
24 |
+
|
25 |
+
Args:
|
26 |
+
tensor (Tensor or np.ndarray or Sequence[Sequence[float]]): The boxes
|
27 |
+
data with shape (N, box_dim).
|
28 |
+
box_dim (int): Number of the dimension of a box. Each row is
|
29 |
+
(x, y, z, x_size, y_size, z_size, yaw). Defaults to 7.
|
30 |
+
with_yaw (bool): Whether the box is with yaw rotation. If False, the
|
31 |
+
value of yaw will be set to 0 as minmax boxes. Defaults to True.
|
32 |
+
origin (Tuple[float]): Relative position of the box origin.
|
33 |
+
Defaults to (0.5, 0.5, 0). This will guide the box be converted to
|
34 |
+
(0.5, 0.5, 0) mode.
|
35 |
+
|
36 |
+
Attributes:
|
37 |
+
tensor (Tensor): Float matrix with shape (N, box_dim).
|
38 |
+
box_dim (int): Integer indicating the dimension of a box. Each row is
|
39 |
+
(x, y, z, x_size, y_size, z_size, yaw, ...).
|
40 |
+
with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
|
41 |
+
boxes.
|
42 |
+
"""
|
43 |
+
|
44 |
+
YAW_AXIS: int = 0
|
45 |
+
|
46 |
+
def __init__(
|
47 |
+
self,
|
48 |
+
tensor: Union[Tensor, np.ndarray, Sequence[Sequence[float]]],
|
49 |
+
box_dim: int = 7,
|
50 |
+
with_yaw: bool = True,
|
51 |
+
origin: Tuple[float, float, float] = (0.5, 0.5, 0)
|
52 |
+
) -> None:
|
53 |
+
if isinstance(tensor, Tensor):
|
54 |
+
device = tensor.device
|
55 |
+
else:
|
56 |
+
device = torch.device('cpu')
|
57 |
+
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
|
58 |
+
if tensor.numel() == 0:
|
59 |
+
# Use reshape, so we don't end up creating a new tensor that does
|
60 |
+
# not depend on the inputs (and consequently confuses jit)
|
61 |
+
tensor = tensor.reshape((-1, box_dim))
|
62 |
+
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, \
|
63 |
+
('The box dimension must be 2 and the length of the last '
|
64 |
+
f'dimension must be {box_dim}, but got boxes with shape '
|
65 |
+
f'{tensor.shape}.')
|
66 |
+
|
67 |
+
if tensor.shape[-1] == 6:
|
68 |
+
# If the dimension of boxes is 6, we expand box_dim by padding 0 as
|
69 |
+
# a fake yaw and set with_yaw to False
|
70 |
+
assert box_dim == 6
|
71 |
+
fake_rot = tensor.new_zeros(tensor.shape[0], 1)
|
72 |
+
tensor = torch.cat((tensor, fake_rot), dim=-1)
|
73 |
+
self.box_dim = box_dim + 1
|
74 |
+
self.with_yaw = False
|
75 |
+
else:
|
76 |
+
self.box_dim = box_dim
|
77 |
+
self.with_yaw = with_yaw
|
78 |
+
self.tensor = tensor.clone()
|
79 |
+
|
80 |
+
if origin != (0.5, 0.5, 0):
|
81 |
+
dst = self.tensor.new_tensor((0.5, 0.5, 0))
|
82 |
+
src = self.tensor.new_tensor(origin)
|
83 |
+
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
|
84 |
+
|
85 |
+
@property
|
86 |
+
def shape(self) -> torch.Size:
|
87 |
+
"""torch.Size: Shape of boxes."""
|
88 |
+
return self.tensor.shape
|
89 |
+
|
90 |
+
@property
|
91 |
+
def volume(self) -> Tensor:
|
92 |
+
"""Tensor: A vector with volume of each box in shape (N, )."""
|
93 |
+
return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]
|
94 |
+
|
95 |
+
@property
|
96 |
+
def dims(self) -> Tensor:
|
97 |
+
"""Tensor: Size dimensions of each box in shape (N, 3)."""
|
98 |
+
return self.tensor[:, 3:6]
|
99 |
+
|
100 |
+
@property
|
101 |
+
def yaw(self) -> Tensor:
|
102 |
+
"""Tensor: A vector with yaw of each box in shape (N, )."""
|
103 |
+
return self.tensor[:, 6]
|
104 |
+
|
105 |
+
@property
|
106 |
+
def height(self) -> Tensor:
|
107 |
+
"""Tensor: A vector with height of each box in shape (N, )."""
|
108 |
+
return self.tensor[:, 5]
|
109 |
+
|
110 |
+
@property
|
111 |
+
def top_height(self) -> Tensor:
|
112 |
+
"""Tensor: A vector with top height of each box in shape (N, )."""
|
113 |
+
return self.bottom_height + self.height
|
114 |
+
|
115 |
+
@property
|
116 |
+
def bottom_height(self) -> Tensor:
|
117 |
+
"""Tensor: A vector with bottom height of each box in shape (N, )."""
|
118 |
+
return self.tensor[:, 2]
|
119 |
+
|
120 |
+
@property
|
121 |
+
def center(self) -> Tensor:
|
122 |
+
"""Calculate the center of all the boxes.
|
123 |
+
|
124 |
+
Note:
|
125 |
+
In MMDetection3D's convention, the bottom center is usually taken
|
126 |
+
as the default center.
|
127 |
+
|
128 |
+
The relative position of the centers in different kinds of boxes
|
129 |
+
are different, e.g., the relative center of a boxes is
|
130 |
+
(0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is
|
131 |
+
recommended to use ``bottom_center`` or ``gravity_center`` for
|
132 |
+
clearer usage.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
Tensor: A tensor with center of each box in shape (N, 3).
|
136 |
+
"""
|
137 |
+
return self.bottom_center
|
138 |
+
|
139 |
+
@property
|
140 |
+
def bottom_center(self) -> Tensor:
|
141 |
+
"""Tensor: A tensor with center of each box in shape (N, 3)."""
|
142 |
+
return self.tensor[:, :3]
|
143 |
+
|
144 |
+
@property
|
145 |
+
def gravity_center(self) -> Tensor:
|
146 |
+
"""Tensor: A tensor with center of each box in shape (N, 3)."""
|
147 |
+
bottom_center = self.bottom_center
|
148 |
+
gravity_center = torch.zeros_like(bottom_center)
|
149 |
+
gravity_center[:, :2] = bottom_center[:, :2]
|
150 |
+
gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5
|
151 |
+
return gravity_center
|
152 |
+
|
153 |
+
@property
|
154 |
+
def corners(self) -> Tensor:
|
155 |
+
"""Tensor: A tensor with 8 corners of each box in shape (N, 8, 3)."""
|
156 |
+
pass
|
157 |
+
|
158 |
+
@property
|
159 |
+
def bev(self) -> Tensor:
|
160 |
+
"""Tensor: 2D BEV box of each box with rotation in XYWHR format, in
|
161 |
+
shape (N, 5)."""
|
162 |
+
return self.tensor[:, [0, 1, 3, 4, 6]]
|
163 |
+
|
164 |
+
def in_range_bev(
|
165 |
+
self, box_range: Union[Tensor, np.ndarray,
|
166 |
+
Sequence[float]]) -> Tensor:
|
167 |
+
"""Check whether the boxes are in the given range.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
box_range (Tensor or np.ndarray or Sequence[float]): The range of
|
171 |
+
box in order of (x_min, y_min, x_max, y_max).
|
172 |
+
|
173 |
+
Note:
|
174 |
+
The original implementation of SECOND checks whether boxes in a
|
175 |
+
range by checking whether the points are in a convex polygon, we
|
176 |
+
reduce the burden for simpler cases.
|
177 |
+
|
178 |
+
Returns:
|
179 |
+
Tensor: A binary vector indicating whether each box is inside the
|
180 |
+
reference range.
|
181 |
+
"""
|
182 |
+
in_range_flags = ((self.bev[:, 0] > box_range[0])
|
183 |
+
& (self.bev[:, 1] > box_range[1])
|
184 |
+
& (self.bev[:, 0] < box_range[2])
|
185 |
+
& (self.bev[:, 1] < box_range[3]))
|
186 |
+
return in_range_flags
|
187 |
+
|
188 |
+
@abstractmethod
|
189 |
+
def rotate(
|
190 |
+
self,
|
191 |
+
angle: Union[Tensor, np.ndarray, float],
|
192 |
+
points: Optional[Union[Tensor, np.ndarray]] = None
|
193 |
+
) -> Union[Tuple[Tensor, Tensor], Tuple[np.ndarray, np.ndarray],
|
194 |
+
Tuple[Tensor], None]:
|
195 |
+
"""Rotate boxes with points (optional) with the given angle or rotation
|
196 |
+
matrix.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
angle (Tensor or np.ndarray or float): Rotation angle or rotation
|
200 |
+
matrix.
|
201 |
+
points (Tensor or np.ndarray or :obj:``, optional):
|
202 |
+
Points to rotate. Defaults to None.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
tuple or None: When ``points`` is None, the function returns None,
|
206 |
+
otherwise it returns the rotated points and the rotation matrix
|
207 |
+
``rot_mat_T``.
|
208 |
+
"""
|
209 |
+
pass
|
210 |
+
|
211 |
+
@abstractmethod
|
212 |
+
def flip(
|
213 |
+
self,
|
214 |
+
bev_direction: str = 'horizontal',
|
215 |
+
points: Optional[Union[Tensor, np.ndarray, ]] = None
|
216 |
+
) -> Union[Tensor, np.ndarray, None]:
|
217 |
+
"""Flip the boxes in BEV along given BEV direction.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
bev_direction (str): Direction by which to flip. Can be chosen from
|
221 |
+
'horizontal' and 'vertical'. Defaults to 'horizontal'.
|
222 |
+
points (Tensor or np.ndarray or :obj:``, optional):
|
223 |
+
Points to flip. Defaults to None.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
Tensor or np.ndarray or :obj:`` or None: When ``points``
|
227 |
+
is None, the function returns None, otherwise it returns the
|
228 |
+
flipped points.
|
229 |
+
"""
|
230 |
+
pass
|
231 |
+
|
232 |
+
def translate(self, trans_vector: Union[Tensor, np.ndarray]) -> None:
|
233 |
+
"""Translate boxes with the given translation vector.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
trans_vector (Tensor or np.ndarray): Translation vector of size
|
237 |
+
1x3.
|
238 |
+
"""
|
239 |
+
if not isinstance(trans_vector, Tensor):
|
240 |
+
trans_vector = self.tensor.new_tensor(trans_vector)
|
241 |
+
self.tensor[:, :3] += trans_vector
|
242 |
+
|
243 |
+
def in_range_3d(
|
244 |
+
self, box_range: Union[Tensor, np.ndarray,
|
245 |
+
Sequence[float]]) -> Tensor:
|
246 |
+
"""Check whether the boxes are in the given range.
|
247 |
+
|
248 |
+
Args:
|
249 |
+
box_range (Tensor or np.ndarray or Sequence[float]): The range of
|
250 |
+
box (x_min, y_min, z_min, x_max, y_max, z_max).
|
251 |
+
|
252 |
+
Note:
|
253 |
+
In the original implementation of SECOND, checking whether a box in
|
254 |
+
the range checks whether the points are in a convex polygon, we try
|
255 |
+
to reduce the burden for simpler cases.
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
Tensor: A binary vector indicating whether each point is inside the
|
259 |
+
reference range.
|
260 |
+
"""
|
261 |
+
in_range_flags = ((self.tensor[:, 0] > box_range[0])
|
262 |
+
& (self.tensor[:, 1] > box_range[1])
|
263 |
+
& (self.tensor[:, 2] > box_range[2])
|
264 |
+
& (self.tensor[:, 0] < box_range[3])
|
265 |
+
& (self.tensor[:, 1] < box_range[4])
|
266 |
+
& (self.tensor[:, 2] < box_range[5]))
|
267 |
+
return in_range_flags
|
268 |
+
|
269 |
+
@abstractmethod
|
270 |
+
def convert_to(self,
|
271 |
+
dst: int,
|
272 |
+
rt_mat: Optional[Union[Tensor, np.ndarray]] = None,
|
273 |
+
correct_yaw: bool = False) -> 'BaseInstance3DBoxes':
|
274 |
+
"""Convert self to ``dst`` mode.
|
275 |
+
|
276 |
+
Args:
|
277 |
+
dst (int): The target Box mode.
|
278 |
+
rt_mat (Tensor or np.ndarray, optional): The rotation and
|
279 |
+
translation matrix between different coordinates.
|
280 |
+
Defaults to None. The conversion from ``src`` coordinates to
|
281 |
+
``dst`` coordinates usually comes along the change of sensors,
|
282 |
+
e.g., from camera to LiDAR. This requires a transformation
|
283 |
+
matrix.
|
284 |
+
correct_yaw (bool): Whether to convert the yaw angle to the target
|
285 |
+
coordinate. Defaults to False.
|
286 |
+
|
287 |
+
Returns:
|
288 |
+
:obj:`BaseInstance3DBoxes`: The converted box of the same type in
|
289 |
+
the ``dst`` mode.
|
290 |
+
"""
|
291 |
+
pass
|
292 |
+
|
293 |
+
def scale(self, scale_factor: float) -> None:
|
294 |
+
"""Scale the box with horizontal and vertical scaling factors.
|
295 |
+
|
296 |
+
Args:
|
297 |
+
scale_factors (float): Scale factors to scale the boxes.
|
298 |
+
"""
|
299 |
+
self.tensor[:, :6] *= scale_factor
|
300 |
+
self.tensor[:, 7:] *= scale_factor # velocity
|
301 |
+
|
302 |
+
def nonempty(self, threshold: float = 0.0) -> Tensor:
|
303 |
+
"""Find boxes that are non-empty.
|
304 |
+
|
305 |
+
A box is considered empty if either of its side is no larger than
|
306 |
+
threshold.
|
307 |
+
|
308 |
+
Args:
|
309 |
+
threshold (float): The threshold of minimal sizes. Defaults to 0.0.
|
310 |
+
|
311 |
+
Returns:
|
312 |
+
Tensor: A binary vector which represents whether each box is empty
|
313 |
+
(False) or non-empty (True).
|
314 |
+
"""
|
315 |
+
box = self.tensor
|
316 |
+
size_x = box[..., 3]
|
317 |
+
size_y = box[..., 4]
|
318 |
+
size_z = box[..., 5]
|
319 |
+
keep = ((size_x > threshold)
|
320 |
+
& (size_y > threshold) & (size_z > threshold))
|
321 |
+
return keep
|
322 |
+
|
323 |
+
def __getitem__(
|
324 |
+
self, item: Union[int, slice, np.ndarray,
|
325 |
+
Tensor]) -> 'BaseInstance3DBoxes':
|
326 |
+
"""
|
327 |
+
Args:
|
328 |
+
item (int or slice or np.ndarray or Tensor): Index of boxes.
|
329 |
+
|
330 |
+
Note:
|
331 |
+
The following usage are allowed:
|
332 |
+
|
333 |
+
1. `new_boxes = boxes[3]`: Return a `Boxes` that contains only one
|
334 |
+
box.
|
335 |
+
2. `new_boxes = boxes[2:10]`: Return a slice of boxes.
|
336 |
+
3. `new_boxes = boxes[vector]`: Where vector is a
|
337 |
+
torch.BoolTensor with `length = len(boxes)`. Nonzero elements in
|
338 |
+
the vector will be selected.
|
339 |
+
|
340 |
+
Note that the returned Boxes might share storage with this Boxes,
|
341 |
+
subject to PyTorch's indexing semantics.
|
342 |
+
|
343 |
+
Returns:
|
344 |
+
:obj:`BaseInstance3DBoxes`: A new object of
|
345 |
+
:class:`BaseInstance3DBoxes` after indexing.
|
346 |
+
"""
|
347 |
+
original_type = type(self)
|
348 |
+
if isinstance(item, int):
|
349 |
+
return original_type(self.tensor[item].view(1, -1),
|
350 |
+
box_dim=self.box_dim,
|
351 |
+
with_yaw=self.with_yaw)
|
352 |
+
b = self.tensor[item]
|
353 |
+
assert b.dim() == 2, \
|
354 |
+
f'Indexing on Boxes with {item} failed to return a matrix!'
|
355 |
+
return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)
|
356 |
+
|
357 |
+
def __len__(self) -> int:
|
358 |
+
"""int: Number of boxes in the current object."""
|
359 |
+
return self.tensor.shape[0]
|
360 |
+
|
361 |
+
def __repr__(self) -> str:
|
362 |
+
"""str: Return a string that describes the object."""
|
363 |
+
return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')'
|
364 |
+
|
365 |
+
@classmethod
|
366 |
+
def cat(cls, boxes_list: Sequence['BaseInstance3DBoxes']
|
367 |
+
) -> 'BaseInstance3DBoxes':
|
368 |
+
"""Concatenate a list of Boxes into a single Boxes.
|
369 |
+
|
370 |
+
Args:
|
371 |
+
boxes_list (Sequence[:obj:`BaseInstance3DBoxes`]): List of boxes.
|
372 |
+
|
373 |
+
Returns:
|
374 |
+
:obj:`BaseInstance3DBoxes`: The concatenated boxes.
|
375 |
+
"""
|
376 |
+
assert isinstance(boxes_list, (list, tuple))
|
377 |
+
if len(boxes_list) == 0:
|
378 |
+
return cls(torch.empty(0))
|
379 |
+
assert all(isinstance(box, cls) for box in boxes_list)
|
380 |
+
|
381 |
+
# use torch.cat (v.s. layers.cat)
|
382 |
+
# so the returned boxes never share storage with input
|
383 |
+
cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0),
|
384 |
+
box_dim=boxes_list[0].box_dim,
|
385 |
+
with_yaw=boxes_list[0].with_yaw)
|
386 |
+
return cat_boxes
|
387 |
+
|
388 |
+
def numpy(self) -> np.ndarray:
|
389 |
+
"""Reload ``numpy`` from self.tensor."""
|
390 |
+
return self.tensor.numpy()
|
391 |
+
|
392 |
+
def to(self, device: Union[str, torch.device], *args,
|
393 |
+
**kwargs) -> 'BaseInstance3DBoxes':
|
394 |
+
"""Convert current boxes to a specific device.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
device (str or :obj:`torch.device`): The name of the device.
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
:obj:`BaseInstance3DBoxes`: A new boxes object on the specific
|
401 |
+
device.
|
402 |
+
"""
|
403 |
+
original_type = type(self)
|
404 |
+
return original_type(self.tensor.to(device, *args, **kwargs),
|
405 |
+
box_dim=self.box_dim,
|
406 |
+
with_yaw=self.with_yaw)
|
407 |
+
|
408 |
+
def cpu(self) -> 'BaseInstance3DBoxes':
|
409 |
+
"""Convert current boxes to cpu device.
|
410 |
+
|
411 |
+
Returns:
|
412 |
+
:obj:`BaseInstance3DBoxes`: A new boxes object on the cpu device.
|
413 |
+
"""
|
414 |
+
original_type = type(self)
|
415 |
+
return original_type(self.tensor.cpu(),
|
416 |
+
box_dim=self.box_dim,
|
417 |
+
with_yaw=self.with_yaw)
|
418 |
+
|
419 |
+
def cuda(self, *args, **kwargs) -> 'BaseInstance3DBoxes':
|
420 |
+
"""Convert current boxes to cuda device.
|
421 |
+
|
422 |
+
Returns:
|
423 |
+
:obj:`BaseInstance3DBoxes`: A new boxes object on the cuda device.
|
424 |
+
"""
|
425 |
+
original_type = type(self)
|
426 |
+
return original_type(self.tensor.cuda(*args, **kwargs),
|
427 |
+
box_dim=self.box_dim,
|
428 |
+
with_yaw=self.with_yaw)
|
429 |
+
|
430 |
+
def clone(self) -> 'BaseInstance3DBoxes':
|
431 |
+
"""Clone the boxes.
|
432 |
+
|
433 |
+
Returns:
|
434 |
+
:obj:`BaseInstance3DBoxes`: Box object with the same properties as
|
435 |
+
self.
|
436 |
+
"""
|
437 |
+
original_type = type(self)
|
438 |
+
return original_type(self.tensor.clone(),
|
439 |
+
box_dim=self.box_dim,
|
440 |
+
with_yaw=self.with_yaw)
|
441 |
+
|
442 |
+
def detach(self) -> 'BaseInstance3DBoxes':
|
443 |
+
"""Detach the boxes.
|
444 |
+
|
445 |
+
Returns:
|
446 |
+
:obj:`BaseInstance3DBoxes`: Box object with the same properties as
|
447 |
+
self.
|
448 |
+
"""
|
449 |
+
original_type = type(self)
|
450 |
+
return original_type(self.tensor.detach(),
|
451 |
+
box_dim=self.box_dim,
|
452 |
+
with_yaw=self.with_yaw)
|
453 |
+
|
454 |
+
@property
|
455 |
+
def device(self) -> torch.device:
|
456 |
+
"""torch.device: The device of the boxes are on."""
|
457 |
+
return self.tensor.device
|
458 |
+
|
459 |
+
def __iter__(self) -> Iterator[Tensor]:
|
460 |
+
"""Yield a box as a Tensor at a time.
|
461 |
+
|
462 |
+
Returns:
|
463 |
+
Iterator[Tensor]: A box of shape (box_dim, ).
|
464 |
+
"""
|
465 |
+
yield from self.tensor
|
466 |
+
|
467 |
+
@classmethod
|
468 |
+
def height_overlaps(cls, boxes1: 'BaseInstance3DBoxes',
|
469 |
+
boxes2: 'BaseInstance3DBoxes') -> Tensor:
|
470 |
+
"""Calculate height overlaps of two boxes.
|
471 |
+
|
472 |
+
Note:
|
473 |
+
This function calculates the height overlaps between ``boxes1`` and
|
474 |
+
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
|
475 |
+
|
476 |
+
Args:
|
477 |
+
boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
|
478 |
+
boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
|
479 |
+
|
480 |
+
Returns:
|
481 |
+
Tensor: Calculated height overlap of the boxes.
|
482 |
+
"""
|
483 |
+
assert isinstance(boxes1, BaseInstance3DBoxes)
|
484 |
+
assert isinstance(boxes2, BaseInstance3DBoxes)
|
485 |
+
assert type(boxes1) == type(boxes2), \
|
486 |
+
'"boxes1" and "boxes2" should be in the same type, ' \
|
487 |
+
f'but got {type(boxes1)} and {type(boxes2)}.'
|
488 |
+
|
489 |
+
boxes1_top_height = boxes1.top_height.view(-1, 1)
|
490 |
+
boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
|
491 |
+
boxes2_top_height = boxes2.top_height.view(1, -1)
|
492 |
+
boxes2_bottom_height = boxes2.bottom_height.view(1, -1)
|
493 |
+
|
494 |
+
heighest_of_bottom = torch.max(boxes1_bottom_height,
|
495 |
+
boxes2_bottom_height)
|
496 |
+
lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
|
497 |
+
overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
|
498 |
+
return overlaps_h
|
499 |
+
|
500 |
+
def new_box(
|
501 |
+
self, data: Union[Tensor, np.ndarray, Sequence[Sequence[float]]]
|
502 |
+
) -> 'BaseInstance3DBoxes':
|
503 |
+
"""Create a new box object with data.
|
504 |
+
|
505 |
+
The new box and its tensor has the similar properties as self and
|
506 |
+
self.tensor, respectively.
|
507 |
+
|
508 |
+
Args:
|
509 |
+
data (Tensor or np.ndarray or Sequence[Sequence[float]]): Data to
|
510 |
+
be copied.
|
511 |
+
|
512 |
+
Returns:
|
513 |
+
:obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, the
|
514 |
+
object's other properties are similar to ``self``.
|
515 |
+
"""
|
516 |
+
new_tensor = self.tensor.new_tensor(data) \
|
517 |
+
if not isinstance(data, Tensor) else data.to(self.device)
|
518 |
+
original_type = type(self)
|
519 |
+
return original_type(new_tensor,
|
520 |
+
box_dim=self.box_dim,
|
521 |
+
with_yaw=self.with_yaw)
|
522 |
+
|
523 |
+
|
524 |
+
class EulerInstance3DBoxes(BaseInstance3DBoxes):
|
525 |
+
"""3D boxes with 1-D orientation represented by three Euler angles.
|
526 |
+
|
527 |
+
See https://en.wikipedia.org/wiki/Euler_angles for
|
528 |
+
regarding the definition of Euler angles.
|
529 |
+
|
530 |
+
Attributes:
|
531 |
+
tensor (torch.Tensor): Float matrix of N x box_dim.
|
532 |
+
box_dim (int): Integer indicates the dimension of a box
|
533 |
+
Each row is (x, y, z, x_size, y_size, z_size, alpha, beta, gamma).
|
534 |
+
"""
|
535 |
+
|
536 |
+
def __init__(self, tensor, box_dim=9, origin=(0.5, 0.5, 0.5)):
|
537 |
+
if isinstance(tensor, torch.Tensor):
|
538 |
+
device = tensor.device
|
539 |
+
else:
|
540 |
+
device = torch.device('cpu')
|
541 |
+
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
|
542 |
+
if tensor.numel() == 0:
|
543 |
+
# Use reshape, so we don't end up creating a new tensor that
|
544 |
+
# does not depend on the inputs (and consequently confuses jit)
|
545 |
+
tensor = tensor.reshape((0, box_dim)).to(dtype=torch.float32,
|
546 |
+
device=device)
|
547 |
+
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size()
|
548 |
+
|
549 |
+
if tensor.shape[-1] == 6:
|
550 |
+
# If the dimension of boxes is 6, we expand box_dim by padding
|
551 |
+
# (0, 0, 0) as a fake euler angle.
|
552 |
+
assert box_dim == 6
|
553 |
+
fake_rot = tensor.new_zeros(tensor.shape[0], 3)
|
554 |
+
tensor = torch.cat((tensor, fake_rot), dim=-1)
|
555 |
+
self.box_dim = box_dim + 3
|
556 |
+
elif tensor.shape[-1] == 7:
|
557 |
+
assert box_dim == 7
|
558 |
+
fake_euler = tensor.new_zeros(tensor.shape[0], 2)
|
559 |
+
tensor = torch.cat((tensor, fake_euler), dim=-1)
|
560 |
+
self.box_dim = box_dim + 2
|
561 |
+
else:
|
562 |
+
assert tensor.shape[-1] == 9
|
563 |
+
self.box_dim = box_dim
|
564 |
+
self.tensor = tensor.clone()
|
565 |
+
|
566 |
+
self.origin = origin
|
567 |
+
if origin != (0.5, 0.5, 0.5):
|
568 |
+
dst = self.tensor.new_tensor((0.5, 0.5, 0.5))
|
569 |
+
src = self.tensor.new_tensor(origin)
|
570 |
+
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
|
571 |
+
|
572 |
+
def get_corners(self, tensor1):
|
573 |
+
"""torch.Tensor: Coordinates of corners of all the boxes
|
574 |
+
in shape (N, 8, 3).
|
575 |
+
|
576 |
+
Convert the boxes to corners in clockwise order, in form of
|
577 |
+
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
|
578 |
+
|
579 |
+
.. code-block:: none
|
580 |
+
|
581 |
+
up z
|
582 |
+
front y ^
|
583 |
+
/ |
|
584 |
+
/ |
|
585 |
+
(x0, y1, z1) + ----------- + (x1, y1, z1)
|
586 |
+
/| / |
|
587 |
+
/ | / |
|
588 |
+
(x0, y0, z1) + ----------- + + (x1, y1, z0)
|
589 |
+
| / . | /
|
590 |
+
| / origin | /
|
591 |
+
(x0, y0, z0) + ----------- + --------> right x
|
592 |
+
(x1, y0, z0)
|
593 |
+
"""
|
594 |
+
if tensor1.numel() == 0:
|
595 |
+
return torch.empty([0, 8, 3], device=tensor1.device)
|
596 |
+
|
597 |
+
dims = tensor1[:, 3:6]
|
598 |
+
corners_norm = torch.from_numpy(
|
599 |
+
np.stack(np.unravel_index(np.arange(8), [2] * 3),
|
600 |
+
axis=1)).to(device=dims.device, dtype=dims.dtype)
|
601 |
+
|
602 |
+
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
|
603 |
+
# use relative origin
|
604 |
+
assert self.origin == (0.5, 0.5, 0.5), \
|
605 |
+
'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
|
606 |
+
corners_norm = corners_norm - dims.new_tensor(self.origin)
|
607 |
+
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
|
608 |
+
|
609 |
+
# rotate
|
610 |
+
corners = rotation_3d_in_euler(corners, tensor1[:, 6:])
|
611 |
+
|
612 |
+
corners += tensor1[:, :3].view(-1, 1, 3)
|
613 |
+
return corners
|
614 |
+
|
615 |
+
@classmethod
|
616 |
+
def overlaps(cls, boxes1, boxes2, mode='iou', eps=1e-4):
|
617 |
+
"""Calculate 3D overlaps of two boxes.
|
618 |
+
|
619 |
+
Note:
|
620 |
+
This function calculates the overlaps between ``boxes1`` and
|
621 |
+
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
|
622 |
+
|
623 |
+
Args:
|
624 |
+
boxes1 (:obj:`EulerInstance3DBoxes`): Boxes 1 contain N boxes.
|
625 |
+
boxes2 (:obj:`EulerInstance3DBoxes`): Boxes 2 contain M boxes.
|
626 |
+
mode (str): Mode of iou calculation. Defaults to 'iou'.
|
627 |
+
eps (bool): Epsilon. Defaults to 1e-4.
|
628 |
+
|
629 |
+
Returns:
|
630 |
+
torch.Tensor: Calculated 3D overlaps of the boxes.
|
631 |
+
"""
|
632 |
+
assert isinstance(boxes1, EulerInstance3DBoxes)
|
633 |
+
assert isinstance(boxes2, EulerInstance3DBoxes)
|
634 |
+
assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
|
635 |
+
f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'
|
636 |
+
|
637 |
+
assert mode in ['iou']
|
638 |
+
|
639 |
+
rows = len(boxes1)
|
640 |
+
cols = len(boxes2)
|
641 |
+
if rows * cols == 0:
|
642 |
+
return boxes1.tensor.new(rows, cols)
|
643 |
+
|
644 |
+
corners1 = boxes1.corners
|
645 |
+
corners2 = boxes2.corners
|
646 |
+
_, iou3d = box3d_overlap(corners1, corners2, eps=eps)
|
647 |
+
return iou3d
|
648 |
+
|
649 |
+
@property
|
650 |
+
def gravity_center(self):
|
651 |
+
"""torch.Tensor: A tensor with center of each box in shape (N, 3)."""
|
652 |
+
return self.tensor[:, :3]
|
653 |
+
|
654 |
+
@property
|
655 |
+
def corners(self):
|
656 |
+
"""torch.Tensor: Coordinates of corners of all the boxes
|
657 |
+
in shape (N, 8, 3).
|
658 |
+
|
659 |
+
Convert the boxes to corners in clockwise order, in form of
|
660 |
+
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
|
661 |
+
|
662 |
+
.. code-block:: none
|
663 |
+
|
664 |
+
up z
|
665 |
+
front y ^
|
666 |
+
/ |
|
667 |
+
/ |
|
668 |
+
(x0, y1, z1) + ----------- + (x1, y1, z1)
|
669 |
+
/| / |
|
670 |
+
/ | / |
|
671 |
+
(x0, y0, z1) + ----------- + + (x1, y1, z0)
|
672 |
+
| / . | /
|
673 |
+
| / origin | /
|
674 |
+
(x0, y0, z0) + ----------- + --------> right x
|
675 |
+
(x1, y0, z0)
|
676 |
+
"""
|
677 |
+
if self.tensor.numel() == 0:
|
678 |
+
return torch.empty([0, 8, 3], device=self.tensor.device)
|
679 |
+
|
680 |
+
dims = self.dims
|
681 |
+
corners_norm = torch.from_numpy(
|
682 |
+
np.stack(np.unravel_index(np.arange(8), [2] * 3),
|
683 |
+
axis=1)).to(device=dims.device, dtype=dims.dtype)
|
684 |
+
|
685 |
+
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
|
686 |
+
# use relative origin
|
687 |
+
assert self.origin == (0.5, 0.5, 0.5), \
|
688 |
+
'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
|
689 |
+
corners_norm = corners_norm - dims.new_tensor(self.origin)
|
690 |
+
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
|
691 |
+
|
692 |
+
# rotate
|
693 |
+
corners = rotation_3d_in_euler(corners, self.tensor[:, 6:])
|
694 |
+
|
695 |
+
corners += self.tensor[:, :3].view(-1, 1, 3)
|
696 |
+
return corners
|
697 |
+
|
698 |
+
def transform(self, matrix):
|
699 |
+
if self.tensor.shape[0] == 0:
|
700 |
+
return
|
701 |
+
if not isinstance(matrix, torch.Tensor):
|
702 |
+
matrix = self.tensor.new_tensor(matrix)
|
703 |
+
points = self.tensor[:, :3]
|
704 |
+
constant = points.new_ones(points.shape[0], 1)
|
705 |
+
points_extend = torch.concat([points, constant], dim=-1)
|
706 |
+
points_trans = torch.matmul(points_extend, matrix.transpose(-2,
|
707 |
+
-1))[:, :3]
|
708 |
+
|
709 |
+
size = self.tensor[:, 3:6]
|
710 |
+
|
711 |
+
# angle_delta = matrix_to_euler_angles(matrix[:3,:3], 'ZXY')
|
712 |
+
# angle = self.tensor[:,6:] + angle_delta
|
713 |
+
ori_matrix = euler_angles_to_matrix(self.tensor[:, 6:], 'ZXY')
|
714 |
+
rot_matrix = matrix[:3, :3].expand_as(ori_matrix)
|
715 |
+
final = torch.bmm(rot_matrix, ori_matrix)
|
716 |
+
angle = matrix_to_euler_angles(final, 'ZXY')
|
717 |
+
|
718 |
+
self.tensor = torch.cat([points_trans, size, angle], dim=-1)
|
719 |
+
|
720 |
+
def scale(self, scale_factor: float) -> None:
|
721 |
+
"""Scale the box with horizontal and vertical scaling factors.
|
722 |
+
|
723 |
+
Args:
|
724 |
+
scale_factors (float): Scale factors to scale the boxes.
|
725 |
+
"""
|
726 |
+
self.tensor[:, :6] *= scale_factor
|
727 |
+
|
728 |
+
def rotate(self, angle, points=None):
|
729 |
+
"""Rotate boxes with points (optional) with the given angle or rotation
|
730 |
+
matrix.
|
731 |
+
|
732 |
+
Args:
|
733 |
+
angle (float | torch.Tensor | np.ndarray):
|
734 |
+
Rotation angle or rotation matrix.
|
735 |
+
points (torch.Tensor | np.ndarray | :obj:``, optional):
|
736 |
+
Points to rotate. Defaults to None.
|
737 |
+
|
738 |
+
Returns:
|
739 |
+
tuple or None: When ``points`` is None, the function returns
|
740 |
+
None, otherwise it returns the rotated points and the
|
741 |
+
rotation matrix ``rot_mat_T``.
|
742 |
+
"""
|
743 |
+
if not isinstance(angle, torch.Tensor):
|
744 |
+
angle = self.tensor.new_tensor(angle)
|
745 |
+
|
746 |
+
if angle.numel() == 1: # only given yaw angle for rotation
|
747 |
+
angle = self.tensor.new_tensor([angle, 0., 0.])
|
748 |
+
rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
|
749 |
+
elif angle.numel() == 3:
|
750 |
+
rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
|
751 |
+
elif angle.shape == torch.Size([3, 3]):
|
752 |
+
rot_matrix = angle
|
753 |
+
else:
|
754 |
+
raise NotImplementedError
|
755 |
+
|
756 |
+
rot_mat_T = rot_matrix.T
|
757 |
+
transform_matrix = torch.eye(4)
|
758 |
+
transform_matrix[:3, :3] = rot_matrix
|
759 |
+
self.transform(transform_matrix)
|
760 |
+
|
761 |
+
if points is not None:
|
762 |
+
if isinstance(points, torch.Tensor):
|
763 |
+
points[:, :3] = points[:, :3] @ rot_mat_T
|
764 |
+
elif isinstance(points, np.ndarray):
|
765 |
+
rot_mat_T = rot_mat_T.cpu().numpy()
|
766 |
+
points[:, :3] = np.dot(points[:, :3], rot_mat_T)
|
767 |
+
elif isinstance(points, ):
|
768 |
+
points.rotate(rot_mat_T)
|
769 |
+
else:
|
770 |
+
raise ValueError
|
771 |
+
return points, rot_mat_T
|
772 |
+
else:
|
773 |
+
return rot_mat_T
|
774 |
+
|
775 |
+
def flip(self, direction='X'):
|
776 |
+
"""Flip the boxes along the corresponding axis.
|
777 |
+
|
778 |
+
Args:
|
779 |
+
direction (str, optional): Flip axis. Defaults to 'X'.
|
780 |
+
"""
|
781 |
+
assert direction in ['X', 'Y', 'Z']
|
782 |
+
if direction == 'X':
|
783 |
+
self.tensor[:, 0] = -self.tensor[:, 0]
|
784 |
+
self.tensor[:, 6] = -self.tensor[:, 6] + np.pi
|
785 |
+
self.tensor[:, 8] = -self.tensor[:, 8]
|
786 |
+
elif direction == 'Y':
|
787 |
+
self.tensor[:, 1] = -self.tensor[:, 1]
|
788 |
+
self.tensor[:, 6] = -self.tensor[:, 6]
|
789 |
+
self.tensor[:, 7] = -self.tensor[:, 7] + np.pi
|
790 |
+
elif direction == 'Z':
|
791 |
+
self.tensor[:, 2] = -self.tensor[:, 2]
|
792 |
+
self.tensor[:, 7] = -self.tensor[:, 7]
|
793 |
+
self.tensor[:, 8] = -self.tensor[:, 8] + np.pi
|
794 |
+
|
795 |
+
|
796 |
+
def rotation_3d_in_euler(points, angles, return_mat=False, clockwise=False):
|
797 |
+
"""Rotate points by angles according to axis.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
points (np.ndarray | torch.Tensor | list | tuple ):
|
801 |
+
Points of shape (N, M, 3).
|
802 |
+
angles (np.ndarray | torch.Tensor | list | tuple):
|
803 |
+
Vector of angles in shape (N, 3)
|
804 |
+
return_mat: Whether or not return the rotation matrix (transposed).
|
805 |
+
Defaults to False.
|
806 |
+
clockwise: Whether the rotation is clockwise. Defaults to False.
|
807 |
+
|
808 |
+
Raises:
|
809 |
+
ValueError: when the axis is not in range [0, 1, 2], it will
|
810 |
+
raise value error.
|
811 |
+
|
812 |
+
Returns:
|
813 |
+
(torch.Tensor | np.ndarray): Rotated points in shape (N, M, 3).
|
814 |
+
"""
|
815 |
+
batch_free = len(points.shape) == 2
|
816 |
+
if batch_free:
|
817 |
+
points = points[None]
|
818 |
+
|
819 |
+
if len(angles.shape) == 1:
|
820 |
+
angles = angles.expand(points.shape[:1] + (3, ))
|
821 |
+
# angles = torch.full(points.shape[:1], angles)
|
822 |
+
|
823 |
+
assert len(points.shape) == 3 and len(angles.shape) == 2 \
|
824 |
+
and points.shape[0] == angles.shape[0], f'Incorrect shape of points ' \
|
825 |
+
f'angles: {points.shape}, {angles.shape}'
|
826 |
+
|
827 |
+
assert points.shape[-1] in [2, 3], \
|
828 |
+
f'Points size should be 2 or 3 instead of {points.shape[-1]}'
|
829 |
+
|
830 |
+
rot_mat_T = euler_angles_to_matrix(angles, 'ZXY') # N, 3,3
|
831 |
+
|
832 |
+
rot_mat_T = rot_mat_T.transpose(-2, -1)
|
833 |
+
|
834 |
+
if clockwise:
|
835 |
+
raise NotImplementedError('clockwise')
|
836 |
+
|
837 |
+
if points.shape[0] == 0:
|
838 |
+
points_new = points
|
839 |
+
else:
|
840 |
+
points_new = torch.bmm(points, rot_mat_T)
|
841 |
+
|
842 |
+
if batch_free:
|
843 |
+
points_new = points_new.squeeze(0)
|
844 |
+
|
845 |
+
if return_mat:
|
846 |
+
if batch_free:
|
847 |
+
rot_mat_T = rot_mat_T.squeeze(0)
|
848 |
+
return points_new, rot_mat_T
|
849 |
+
else:
|
850 |
+
return points_new
|
851 |
+
|
852 |
+
|
853 |
+
def _axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray:
|
854 |
+
"""Return the rotation matrices for one of the rotations about an axis of
|
855 |
+
which Euler angles describe, for each value of the angle given.
|
856 |
+
|
857 |
+
Args:
|
858 |
+
axis: Axis label "X" or "Y or "Z".
|
859 |
+
angle: any shape tensor of Euler angles in radians
|
860 |
+
|
861 |
+
Returns:
|
862 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
863 |
+
"""
|
864 |
+
|
865 |
+
cos = np.cos(angle)
|
866 |
+
sin = np.sin(angle)
|
867 |
+
one = np.ones_like(angle)
|
868 |
+
zero = np.zeros_like(angle)
|
869 |
+
|
870 |
+
if axis == 'X':
|
871 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
872 |
+
elif axis == 'Y':
|
873 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
874 |
+
elif axis == 'Z':
|
875 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
876 |
+
else:
|
877 |
+
raise ValueError('letter must be either X, Y or Z.')
|
878 |
+
|
879 |
+
return np.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
880 |
+
|
881 |
+
|
882 |
+
|
883 |
+
|
884 |
+
|
885 |
+
def is_inside_box(points, center, size, rotation_mat):
|
886 |
+
"""Check if points are inside a 3D bounding box.
|
887 |
+
|
888 |
+
Args:
|
889 |
+
points: 3D points, numpy array of shape (n, 3).
|
890 |
+
center: center of the box, numpy array of shape (3, ).
|
891 |
+
size: size of the box, numpy array of shape (3, ).
|
892 |
+
rotation_mat: rotation matrix of the box,
|
893 |
+
numpy array of shape (3, 3).
|
894 |
+
|
895 |
+
Returns:
|
896 |
+
Boolean array of shape (n, )
|
897 |
+
indicating if each point is inside the box.
|
898 |
+
"""
|
899 |
+
assert points.shape[1] == 3, 'points should be of shape (n, 3)'
|
900 |
+
points = np.array(points) # n,3
|
901 |
+
center = np.array(center) # n, 3
|
902 |
+
size = np.array(size) # n, 3
|
903 |
+
rotation_mat = np.array(rotation_mat)
|
904 |
+
assert rotation_mat.shape == (
|
905 |
+
3,
|
906 |
+
3,
|
907 |
+
), f'R should be shape (3,3), but got {rotation_mat.shape}'
|
908 |
+
pcd_local = (points - center) @ rotation_mat # n, 3
|
909 |
+
pcd_local = pcd_local / size * 2.0 # scale to [-1, 1] # n, 3
|
910 |
+
pcd_local = abs(pcd_local)
|
911 |
+
return ((pcd_local[:, 0] <= 1)
|
912 |
+
& (pcd_local[:, 1] <= 1)
|
913 |
+
& (pcd_local[:, 2] <= 1))
|
914 |
+
|
915 |
+
|
916 |
+
def normalize_box(scene_pcd, embodied_scan_bbox):
|
917 |
+
"""Find the smallest 6 DoF box that covers these points which 9 DoF box
|
918 |
+
covers.
|
919 |
+
|
920 |
+
Args:
|
921 |
+
scene_pcd (Tensor / ndarray):
|
922 |
+
(..., 3)
|
923 |
+
embodied_scan_bbox (Tensor / ndarray):
|
924 |
+
(9,) 9 DoF box
|
925 |
+
|
926 |
+
Returns:
|
927 |
+
Tensor: Transformed 3D box of shape (N, 8, 3).
|
928 |
+
"""
|
929 |
+
|
930 |
+
bbox = np.array(embodied_scan_bbox)
|
931 |
+
orientation = euler_to_matrix_np(bbox[np.newaxis, 6:])[0]
|
932 |
+
position = np.array(bbox[:3])
|
933 |
+
size = np.array(bbox[3:6])
|
934 |
+
obj_mask = np.array(
|
935 |
+
is_inside_box(scene_pcd[:, :3], position, size, orientation),
|
936 |
+
dtype=bool,
|
937 |
+
)
|
938 |
+
obj_pc = scene_pcd[obj_mask]
|
939 |
+
|
940 |
+
# resume the same if there's None
|
941 |
+
if obj_pc.shape[0] < 1:
|
942 |
+
return embodied_scan_bbox[:6]
|
943 |
+
xmin = np.min(obj_pc[:, 0])
|
944 |
+
ymin = np.min(obj_pc[:, 1])
|
945 |
+
zmin = np.min(obj_pc[:, 2])
|
946 |
+
xmax = np.max(obj_pc[:, 0])
|
947 |
+
ymax = np.max(obj_pc[:, 1])
|
948 |
+
zmax = np.max(obj_pc[:, 2])
|
949 |
+
bbox = np.array([
|
950 |
+
(xmin + xmax) / 2,
|
951 |
+
(ymin + ymax) / 2,
|
952 |
+
(zmin + zmax) / 2,
|
953 |
+
xmax - xmin,
|
954 |
+
ymax - ymin,
|
955 |
+
zmax - zmin,
|
956 |
+
])
|
957 |
+
return bbox
|
958 |
+
|
959 |
+
|
960 |
+
def from_9dof_to_6dof(pcd_data, bbox_):
|
961 |
+
# that's a kind of loss of information, so we don't recommend
|
962 |
+
return normalize_box(pcd_data, bbox_)
|
963 |
+
|
964 |
+
|
965 |
+
def bbox_to_corners(centers, sizes, rot_mat: torch.Tensor) -> torch.Tensor:
|
966 |
+
"""Transform bbox parameters to the 8 corners.
|
967 |
+
|
968 |
+
Args:
|
969 |
+
bbox (Tensor): 3D box of shape (N, 6) or (N, 7) or (N, 9).
|
970 |
+
|
971 |
+
Returns:
|
972 |
+
Tensor: Transformed 3D box of shape (N, 8, 3).
|
973 |
+
"""
|
974 |
+
device = centers.device
|
975 |
+
use_batch = False
|
976 |
+
if len(centers.shape) == 3:
|
977 |
+
use_batch = True
|
978 |
+
batch_size, n_proposals = centers.shape[0], centers.shape[1]
|
979 |
+
centers = centers.reshape(-1, 3)
|
980 |
+
sizes = sizes.reshape(-1, 3)
|
981 |
+
rot_mat = rot_mat.reshape(-1, 3, 3)
|
982 |
+
|
983 |
+
n_box = centers.shape[0]
|
984 |
+
if use_batch:
|
985 |
+
assert n_box == batch_size * n_proposals
|
986 |
+
centers = centers.unsqueeze(1).repeat(1, 8, 1) # shape (N, 8, 3)
|
987 |
+
half_sizes = sizes.unsqueeze(1).repeat(1, 8, 1) / 2 # shape (N, 8, 3)
|
988 |
+
eight_corners_x = (torch.tensor([1, 1, 1, 1, -1, -1, -1, -1],
|
989 |
+
device=device).unsqueeze(0).repeat(
|
990 |
+
n_box, 1)) # shape (N, 8)
|
991 |
+
eight_corners_y = (torch.tensor([1, 1, -1, -1, 1, 1, -1, -1],
|
992 |
+
device=device).unsqueeze(0).repeat(
|
993 |
+
n_box, 1)) # shape (N, 8)
|
994 |
+
eight_corners_z = (torch.tensor([1, -1, -1, 1, 1, -1, -1, 1],
|
995 |
+
device=device).unsqueeze(0).repeat(
|
996 |
+
n_box, 1)) # shape (N, 8)
|
997 |
+
eight_corners = torch.stack(
|
998 |
+
(eight_corners_x, eight_corners_y, eight_corners_z),
|
999 |
+
dim=-1) # shape (N, 8, 3)
|
1000 |
+
eight_corners = eight_corners * half_sizes # shape (N, 8, 3)
|
1001 |
+
# rot_mat: (N, 3, 3), eight_corners: (N, 8, 3)
|
1002 |
+
rotated_corners = torch.matmul(eight_corners,
|
1003 |
+
rot_mat.transpose(1, 2)) # shape (N, 8, 3)
|
1004 |
+
res = centers + rotated_corners
|
1005 |
+
if use_batch:
|
1006 |
+
res = res.reshape(batch_size, n_proposals, 8, 3)
|
1007 |
+
return res
|
1008 |
+
|
1009 |
+
|
1010 |
+
def euler_iou3d_corners(boxes1, boxes2):
|
1011 |
+
rows = boxes1.shape[0]
|
1012 |
+
cols = boxes2.shape[0]
|
1013 |
+
if rows * cols == 0:
|
1014 |
+
return boxes1.new(rows, cols)
|
1015 |
+
|
1016 |
+
_, iou3d = box3d_overlap(boxes1, boxes2)
|
1017 |
+
return iou3d
|
1018 |
+
|
1019 |
+
|
1020 |
+
def euler_iou3d_bbox(center1, size1, rot1, center2, size2, rot2):
|
1021 |
+
"""Calculate the 3D IoU between two grounps of 9DOF bounding boxes.
|
1022 |
+
|
1023 |
+
Args:
|
1024 |
+
center1 (Tensor): (n, cx, cy, cz) of grounp1.
|
1025 |
+
size1 (Tensor): (n, l, w, h) of grounp1.
|
1026 |
+
rot1 (Tensor): rot matrix of grounp1.
|
1027 |
+
center1 (Tensor): (m, cx, cy, cz) of grounp2.
|
1028 |
+
size1 (Tensor): (m, l, w, h) of grounp2.
|
1029 |
+
rot1 (Tensor): rot matrix of grounp2.
|
1030 |
+
|
1031 |
+
Returns:
|
1032 |
+
numpy.ndarray: (n, m) the 3D IoU.
|
1033 |
+
"""
|
1034 |
+
if torch.cuda.is_available():
|
1035 |
+
center1 = center1.cuda()
|
1036 |
+
size1 = size1.cuda()
|
1037 |
+
rot1 = rot1.cuda()
|
1038 |
+
center2 = center2.cuda()
|
1039 |
+
size2 = size2.cuda()
|
1040 |
+
rot2 = rot2.cuda()
|
1041 |
+
corners1 = bbox_to_corners(center1, size1, rot1)
|
1042 |
+
corners2 = bbox_to_corners(center2, size2, rot2)
|
1043 |
+
result = euler_iou3d_corners(corners1, corners2)
|
1044 |
+
|
1045 |
+
if torch.cuda.is_available():
|
1046 |
+
result = result.detach().cpu()
|
1047 |
+
return result.numpy()
|
1048 |
+
|
1049 |
+
|
1050 |
+
def index_box(boxes: List[torch.tensor],
|
1051 |
+
indices: Union[List[torch.tensor], torch.tensor])\
|
1052 |
+
-> Union[List[torch.tensor], torch.tensor]:
|
1053 |
+
"""Convert a grounp of bounding boxes represented in [center, size, rot]
|
1054 |
+
format to 9 DoF format.
|
1055 |
+
|
1056 |
+
Args:
|
1057 |
+
box (list/tuple, tensor): boxes in a grounp.
|
1058 |
+
|
1059 |
+
Returns:
|
1060 |
+
Tensor : 9 DoF format. (num,9)
|
1061 |
+
"""
|
1062 |
+
if isinstance(boxes, (list, tuple)):
|
1063 |
+
return [index_box(box, indices) for box in boxes]
|
1064 |
+
else:
|
1065 |
+
return boxes[indices]
|
1066 |
+
|
1067 |
+
|
1068 |
+
def to_9dof_box(box: List[torch.tensor]):
|
1069 |
+
"""Convert a grounp of bounding boxes represented in [center, size, rot]
|
1070 |
+
format to 9 DoF format.
|
1071 |
+
|
1072 |
+
Args:
|
1073 |
+
box (list/tuple, tensor): boxes in a grounp.
|
1074 |
+
|
1075 |
+
Returns:
|
1076 |
+
Tensor : 9 DoF format. (num,9)
|
1077 |
+
"""
|
1078 |
+
|
1079 |
+
return EulerInstance3DBoxes(box, origin=(0.5, 0.5, 0.5))
|
test_annotations_mmscan.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vg_evaluator.py
ADDED
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Tuple
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
from mmscan_utils.box_metric import (get_average_precision,
|
8 |
+
get_general_topk_scores,
|
9 |
+
subset_get_average_precision)
|
10 |
+
from mmscan_utils.box_utils import index_box, to_9dof_box
|
11 |
+
|
12 |
+
|
13 |
+
class VisualGroundingEvaluator:
|
14 |
+
"""Evaluator for MMScan Visual Grounding benchmark. The evaluation metric
|
15 |
+
includes "AP","AP_C","AR","gTop-k".
|
16 |
+
|
17 |
+
Attributes:
|
18 |
+
save_buffer(list[dict]): Save the buffer of Inputs.
|
19 |
+
|
20 |
+
records(list[dict]): Metric results for each sample
|
21 |
+
|
22 |
+
category_records(dict): Metric results for each category
|
23 |
+
(average of all samples with the same category)
|
24 |
+
Args:
|
25 |
+
show_results(bool): Whether to print the evaluation results.
|
26 |
+
Defaults to True.
|
27 |
+
"""
|
28 |
+
|
29 |
+
def __init__(self, show_results: bool = True) -> None:
|
30 |
+
|
31 |
+
self.show_results = show_results
|
32 |
+
self.eval_metric_type = ['AP', 'AR']
|
33 |
+
self.top_k_visible = [1, 3, 5]
|
34 |
+
self.call_for_category_mode = True
|
35 |
+
|
36 |
+
for top_k in [1, 3, 5, 10]:
|
37 |
+
self.eval_metric_type.append(f'gTop-{top_k}')
|
38 |
+
|
39 |
+
self.iou_thresholds = [0.25, 0.50]
|
40 |
+
self.eval_metric = []
|
41 |
+
for iou_thr in self.iou_thresholds:
|
42 |
+
for eval_type in self.eval_metric_type:
|
43 |
+
self.eval_metric.append(eval_type + '@' + str(iou_thr))
|
44 |
+
|
45 |
+
self.reset()
|
46 |
+
|
47 |
+
def reset(self) -> None:
|
48 |
+
"""Reset the evaluator, clear the buffer and records."""
|
49 |
+
self.save_buffer = []
|
50 |
+
self.records = []
|
51 |
+
self.category_records = {}
|
52 |
+
|
53 |
+
def update(self, raw_batch_input: List[dict]) -> None:
|
54 |
+
"""Update a batch of results to the buffer.
|
55 |
+
|
56 |
+
Args:
|
57 |
+
raw_batch_input (list[dict]):
|
58 |
+
Batch of the raw original input.
|
59 |
+
"""
|
60 |
+
self.__check_format__(raw_batch_input)
|
61 |
+
self.save_buffer.extend(raw_batch_input)
|
62 |
+
|
63 |
+
def start_evaluation(self) -> dict:
|
64 |
+
"""This function is used to start the evaluation process.
|
65 |
+
|
66 |
+
It will iterate over the saved buffer and evaluate each item.
|
67 |
+
Returns:
|
68 |
+
category_records(dict): Metric results per category.
|
69 |
+
"""
|
70 |
+
|
71 |
+
category_collect = {}
|
72 |
+
|
73 |
+
for data_item in tqdm(self.save_buffer):
|
74 |
+
|
75 |
+
metric_for_single = {}
|
76 |
+
|
77 |
+
# (1) len(gt)==0 : skip
|
78 |
+
if self.__is_zero__(data_item['gt_bboxes']):
|
79 |
+
continue
|
80 |
+
|
81 |
+
# (2) len(pred)==0 : model's wrong
|
82 |
+
if self.__is_zero__(data_item['pred_bboxes']):
|
83 |
+
for iou_thr in self.iou_thresholds:
|
84 |
+
metric_for_single[f'AP@{iou_thr}'] = 0
|
85 |
+
metric_for_single[f'AR@{iou_thr}'] = 0
|
86 |
+
for topk in [1, 3, 5, 10]:
|
87 |
+
metric_for_single[f'gTop-{topk}@{iou_thr}'] = 0
|
88 |
+
|
89 |
+
data_item['num_gts'] = len(data_item['gt_bboxes'])
|
90 |
+
data_item.update(metric_for_single)
|
91 |
+
self.records.append(data_item)
|
92 |
+
continue
|
93 |
+
|
94 |
+
iou_array, pred_score = self.__calculate_iou_array_(data_item)
|
95 |
+
if self.call_for_category_mode:
|
96 |
+
category = self.__category_mapping__(data_item['subclass'])
|
97 |
+
if category not in category_collect.keys():
|
98 |
+
category_collect[category] = {
|
99 |
+
'ious': [],
|
100 |
+
'scores': [],
|
101 |
+
'sample_indices': [],
|
102 |
+
'cnt': 0,
|
103 |
+
}
|
104 |
+
|
105 |
+
category_collect[category]['ious'].extend(iou_array)
|
106 |
+
category_collect[category]['scores'].extend(pred_score)
|
107 |
+
category_collect[category]['sample_indices'].extend(
|
108 |
+
[data_item['index']] * len(iou_array))
|
109 |
+
category_collect[category]['cnt'] += 1
|
110 |
+
|
111 |
+
for iou_thr in self.iou_thresholds:
|
112 |
+
# AP/AR metric
|
113 |
+
AP, AR = get_average_precision(iou_array, iou_thr)
|
114 |
+
metric_for_single[f'AP@{iou_thr}'] = AP
|
115 |
+
metric_for_single[f'AR@{iou_thr}'] = AR
|
116 |
+
|
117 |
+
# topk metric
|
118 |
+
metric_for_single.update(
|
119 |
+
get_general_topk_scores(iou_array, iou_thr))
|
120 |
+
|
121 |
+
data_item['num_gts'] = iou_array.shape[1]
|
122 |
+
data_item.update(metric_for_single)
|
123 |
+
self.records.append(data_item)
|
124 |
+
|
125 |
+
self.collect_result()
|
126 |
+
|
127 |
+
if self.call_for_category_mode:
|
128 |
+
for iou_thr in self.iou_thresholds:
|
129 |
+
self.category_records['overall'][f'AP_C@{iou_thr}'] = 0
|
130 |
+
self.category_records['overall'][f'AR_C@{iou_thr}'] = 0
|
131 |
+
|
132 |
+
for category in category_collect:
|
133 |
+
AP_C, AR_C = subset_get_average_precision(
|
134 |
+
category_collect[category], iou_thr)
|
135 |
+
self.category_records[category][f'AP_C@{iou_thr}'] = AP_C
|
136 |
+
self.category_records[category][f'AR_C@{iou_thr}'] = AR_C
|
137 |
+
self.category_records['overall'][f'AP_C@{iou_thr}'] += (
|
138 |
+
AP_C * category_collect[category]['cnt'] /
|
139 |
+
len(self.records))
|
140 |
+
self.category_records['overall'][f'AR_C@{iou_thr}'] += (
|
141 |
+
AR_C * category_collect[category]['cnt'] /
|
142 |
+
len(self.records))
|
143 |
+
|
144 |
+
return self.category_records
|
145 |
+
|
146 |
+
def collect_result(self) -> dict:
|
147 |
+
"""Collect the result from the evaluation process.
|
148 |
+
|
149 |
+
Stores them based on their subclass.
|
150 |
+
Returns:
|
151 |
+
category_results(dict): Average results per category.
|
152 |
+
"""
|
153 |
+
category_results = {}
|
154 |
+
category_results['overall'] = {}
|
155 |
+
|
156 |
+
for metric_name in self.eval_metric:
|
157 |
+
category_results['overall'][metric_name] = []
|
158 |
+
category_results['overall']['num_gts'] = 0
|
159 |
+
|
160 |
+
for data_item in self.records:
|
161 |
+
category = self.__category_mapping__(data_item['subclass'])
|
162 |
+
|
163 |
+
if category not in category_results:
|
164 |
+
category_results[category] = {}
|
165 |
+
for metric_name in self.eval_metric:
|
166 |
+
category_results[category][metric_name] = []
|
167 |
+
category_results[category]['num_gts'] = 0
|
168 |
+
|
169 |
+
for metric_name in self.eval_metric:
|
170 |
+
for metric_name in self.eval_metric:
|
171 |
+
category_results[category][metric_name].append(
|
172 |
+
data_item[metric_name])
|
173 |
+
category_results['overall'][metric_name].append(
|
174 |
+
data_item[metric_name])
|
175 |
+
|
176 |
+
category_results['overall']['num_gts'] += data_item['num_gts']
|
177 |
+
category_results[category]['num_gts'] += data_item['num_gts']
|
178 |
+
for category in category_results:
|
179 |
+
for metric_name in self.eval_metric:
|
180 |
+
category_results[category][metric_name] = np.mean(
|
181 |
+
category_results[category][metric_name])
|
182 |
+
|
183 |
+
self.category_records = category_results
|
184 |
+
|
185 |
+
return category_results
|
186 |
+
|
187 |
+
def print_result(self) -> str:
|
188 |
+
"""Showing the result table.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
table(str): The metric result table.
|
192 |
+
"""
|
193 |
+
assert len(self.category_records) > 0, 'No result yet.'
|
194 |
+
self.category_records = {
|
195 |
+
key: self.category_records[key]
|
196 |
+
for key in sorted(self.category_records.keys(), reverse=True)
|
197 |
+
}
|
198 |
+
|
199 |
+
header = ['Type']
|
200 |
+
header.extend(self.category_records.keys())
|
201 |
+
table_columns = [[] for _ in range(len(header))]
|
202 |
+
|
203 |
+
# some metrics
|
204 |
+
for iou_thr in self.iou_thresholds:
|
205 |
+
show_in_table = (['AP', 'AR'] +
|
206 |
+
[f'gTop-{k}' for k in self.top_k_visible]
|
207 |
+
if not self.call_for_category_mode else
|
208 |
+
['AP', 'AR', 'AP_C', 'AR_C'] +
|
209 |
+
[f'gTop-{k}' for k in self.top_k_visible])
|
210 |
+
|
211 |
+
for metric_type in show_in_table:
|
212 |
+
table_columns[0].append(metric_type + ' ' + str(iou_thr))
|
213 |
+
|
214 |
+
for i, category in enumerate(self.category_records.keys()):
|
215 |
+
ap = self.category_records[category][f'AP@{iou_thr}']
|
216 |
+
ar = self.category_records[category][f'AR@{iou_thr}']
|
217 |
+
table_columns[i + 1].append(f'{float(ap):.4f}')
|
218 |
+
table_columns[i + 1].append(f'{float(ar):.4f}')
|
219 |
+
|
220 |
+
ap = self.category_records[category][f'AP_C@{iou_thr}']
|
221 |
+
ar = self.category_records[category][f'AR_C@{iou_thr}']
|
222 |
+
table_columns[i + 1].append(f'{float(ap):.4f}')
|
223 |
+
table_columns[i + 1].append(f'{float(ar):.4f}')
|
224 |
+
for k in self.top_k_visible:
|
225 |
+
top_k = self.category_records[category][
|
226 |
+
f'gTop-{k}@{iou_thr}']
|
227 |
+
table_columns[i + 1].append(f'{float(top_k):.4f}')
|
228 |
+
|
229 |
+
# Number of gts
|
230 |
+
table_columns[0].append('Num GT')
|
231 |
+
for i, category in enumerate(self.category_records.keys()):
|
232 |
+
table_columns[i + 1].append(
|
233 |
+
f'{int(self.category_records[category]["num_gts"])}')
|
234 |
+
|
235 |
+
table_data = [header]
|
236 |
+
table_rows = list(zip(*table_columns))
|
237 |
+
table_data += table_rows
|
238 |
+
table_data = [list(row) for row in zip(*table_data)]
|
239 |
+
|
240 |
+
|
241 |
+
return table_data
|
242 |
+
|
243 |
+
def __category_mapping__(self, sub_class: str) -> str:
|
244 |
+
"""Mapping the subclass name to the category name.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
sub_class (str): The subclass name in the original samples.
|
248 |
+
|
249 |
+
Returns:
|
250 |
+
category (str): The category name.
|
251 |
+
"""
|
252 |
+
sub_class = sub_class.lower()
|
253 |
+
sub_class = sub_class.replace('single', 'sngl')
|
254 |
+
sub_class = sub_class.replace('inter', 'int')
|
255 |
+
sub_class = sub_class.replace('unique', 'uniq')
|
256 |
+
sub_class = sub_class.replace('common', 'cmn')
|
257 |
+
sub_class = sub_class.replace('attribute', 'attr')
|
258 |
+
if 'sngl' in sub_class and ('attr' in sub_class or 'eq' in sub_class):
|
259 |
+
sub_class = 'vg_sngl_attr'
|
260 |
+
return sub_class
|
261 |
+
|
262 |
+
def __calculate_iou_array_(
|
263 |
+
self, data_item: dict) -> Tuple[np.ndarray, np.ndarray]:
|
264 |
+
"""Calculate some information needed for eavl.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
data_item (dict): The subclass name in the original samples.
|
268 |
+
|
269 |
+
Returns:
|
270 |
+
np.ndarray, np.ndarray :
|
271 |
+
The iou array sorted by the confidence and the
|
272 |
+
confidence scores.
|
273 |
+
"""
|
274 |
+
|
275 |
+
pred_bboxes = data_item['pred_bboxes']
|
276 |
+
gt_bboxes = data_item['gt_bboxes']
|
277 |
+
# Sort the bounding boxes based on their scores
|
278 |
+
pred_scores = data_item['pred_scores']
|
279 |
+
top_idxs = torch.argsort(pred_scores, descending=True)
|
280 |
+
pred_scores = pred_scores[top_idxs]
|
281 |
+
|
282 |
+
pred_bboxes = to_9dof_box(index_box(pred_bboxes, top_idxs))
|
283 |
+
|
284 |
+
gt_bboxes = to_9dof_box(gt_bboxes)
|
285 |
+
|
286 |
+
|
287 |
+
iou_matrix = pred_bboxes.overlaps(pred_bboxes,
|
288 |
+
gt_bboxes) # (num_query, num_gt)
|
289 |
+
# (3) calculate the TP and NP,
|
290 |
+
# preparing for the forward AP/topk calculation
|
291 |
+
pred_scores = pred_scores.cpu().numpy()
|
292 |
+
iou_array = iou_matrix.cpu().numpy()
|
293 |
+
|
294 |
+
return iou_array, pred_scores
|
295 |
+
|
296 |
+
def __is_zero__(self, box):
|
297 |
+
if isinstance(box, (list, tuple)):
|
298 |
+
return (len(box[0]) == 0)
|
299 |
+
return (len(box) == 0)
|
300 |
+
|
301 |
+
def __check_format__(self, raw_input: List[dict]) -> None:
|
302 |
+
"""Check if the input conform with mmscan evaluation format. Transform
|
303 |
+
the input box format.
|
304 |
+
|
305 |
+
Args:
|
306 |
+
raw_input (list[dict]): The input of VG evaluator.
|
307 |
+
"""
|
308 |
+
assert isinstance(
|
309 |
+
raw_input,
|
310 |
+
list), 'The input of VG evaluator should be a list of dict. '
|
311 |
+
raw_input = raw_input
|
312 |
+
|
313 |
+
for _index in tqdm(range(len(raw_input))):
|
314 |
+
if 'index' not in raw_input[_index]:
|
315 |
+
raw_input[_index]['index'] = len(self.save_buffer) + _index
|
316 |
+
|
317 |
+
if 'subclass' not in raw_input[_index]:
|
318 |
+
raw_input[_index]['subclass'] = 'non-class'
|
319 |
+
|
320 |
+
assert 'gt_bboxes' in raw_input[_index]
|
321 |
+
assert 'pred_bboxes' in raw_input[_index]
|
322 |
+
assert 'pred_scores' in raw_input[_index]
|
323 |
+
|
324 |
+
for mode in ['pred_bboxes', 'gt_bboxes']:
|
325 |
+
if (isinstance(raw_input[_index][mode], dict)
|
326 |
+
and 'center' in raw_input[_index][mode]):
|
327 |
+
raw_input[_index][mode] = [
|
328 |
+
torch.tensor(raw_input[_index][mode]['center']),
|
329 |
+
torch.tensor(raw_input[_index][mode]['size']).to(
|
330 |
+
torch.float32),
|
331 |
+
torch.tensor(raw_input[_index][mode]['rot']).to(
|
332 |
+
torch.float32)
|
333 |
+
]
|
334 |
+
|
335 |
+
|
336 |
+
def trun_box(box_list):
|
337 |
+
trun_box_list = []
|
338 |
+
for box in box_list:
|
339 |
+
trun_box_list.append([round(x,2) for x in box])
|
340 |
+
return trun_box_list
|
341 |
+
|
342 |
+
def evaluation_for_challenge(gt_data,pred_data):
|
343 |
+
inputs = []
|
344 |
+
for sample_ID in gt_data:
|
345 |
+
batch_result = {}
|
346 |
+
if sample_ID not in pred_data:
|
347 |
+
batch_result["pred_scores"] = torch.zeros(0,9)
|
348 |
+
batch_result["pred_bboxes"] = torch.zeros(0,)
|
349 |
+
else:
|
350 |
+
batch_result["pred_scores"] = torch.tensor(pred_data[sample_ID]["score"])
|
351 |
+
batch_result["pred_bboxes"] = torch.tensor(trun_box(pred_data[sample_ID]["pred_bboxes"]))
|
352 |
+
|
353 |
+
batch_result["gt_bboxes"] = torch.tensor(gt_data[sample_ID])
|
354 |
+
batch_result["subclass"] = sample_ID.split('__')[0]
|
355 |
+
inputs.append(batch_result)
|
356 |
+
|
357 |
+
vg_evaluator = VisualGroundingEvaluator()
|
358 |
+
vg_evaluator.update(inputs)
|
359 |
+
results = vg_evaluator.start_evaluation()
|
360 |
+
#vg_evaluator.print_result()
|
361 |
+
return results['overall']
|