Spaces:
Running
Running
Upload 7 files
Browse files- app.py +32 -1
- evaluate.py +7 -12
- leaderboard.csv +12 -0
- mmscan_utils/box_metric.py +277 -0
- mmscan_utils/box_utils.py +1079 -0
- test_annotations_mmscan.json +0 -0
- vg_evaluator.py +361 -0
app.py
CHANGED
|
@@ -4,8 +4,39 @@ import pandas as pd
|
|
| 4 |
import os
|
| 5 |
|
| 6 |
LEADERBOARD_CSV = "leaderboard.csv"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def evaluate_and_update(pred_file, username):
|
|
|
|
|
|
|
| 9 |
score = run_evaluation(pred_file.name)
|
| 10 |
if os.path.exists(LEADERBOARD_CSV):
|
| 11 |
df = pd.read_csv(LEADERBOARD_CSV)
|
|
@@ -19,7 +50,7 @@ def evaluate_and_update(pred_file, username):
|
|
| 19 |
with gr.Blocks() as demo:
|
| 20 |
gr.Markdown("# 🧊 3D IoU Challenge")
|
| 21 |
name = gr.Textbox(label="Username")
|
| 22 |
-
upload = gr.File(label="Upload your prediction (.
|
| 23 |
score_text = gr.Textbox(label="Evaluation score")
|
| 24 |
leaderboard = gr.Dataframe(headers=["Name", "Score"], interactive=False)
|
| 25 |
|
|
|
|
| 4 |
import os
|
| 5 |
|
| 6 |
LEADERBOARD_CSV = "leaderboard.csv"
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime, date
|
| 10 |
+
|
| 11 |
+
SUBMIT_RECORD = "submissions.csv"
|
| 12 |
+
MAX_SUBMIT_PER_DAY = 2
|
| 13 |
+
|
| 14 |
+
def check_submission_limit(username):
|
| 15 |
+
if not os.path.exists(SUBMIT_RECORD):
|
| 16 |
+
return True # 没有人提交过
|
| 17 |
+
|
| 18 |
+
df = pd.read_csv(SUBMIT_RECORD)
|
| 19 |
+
today = date.today()
|
| 20 |
+
|
| 21 |
+
user_today_subs = df[
|
| 22 |
+
(df["username"] == username) &
|
| 23 |
+
(pd.to_datetime(df["timestamp"]).dt.date == today)
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
return len(user_today_subs) < MAX_SUBMIT_PER_DAY
|
| 27 |
+
|
| 28 |
+
def record_submission(username):
|
| 29 |
+
now = datetime.now().isoformat()
|
| 30 |
+
if os.path.exists(SUBMIT_RECORD):
|
| 31 |
+
df = pd.read_csv(SUBMIT_RECORD)
|
| 32 |
+
else:
|
| 33 |
+
df = pd.DataFrame(columns=["username", "timestamp"])
|
| 34 |
+
df.loc[len(df)] = {"username": username, "timestamp": now}
|
| 35 |
+
df.to_csv(SUBMIT_RECORD, index=False)
|
| 36 |
|
| 37 |
def evaluate_and_update(pred_file, username):
|
| 38 |
+
if not check_submission_limit(username):
|
| 39 |
+
return "⛔ Submission limit exceeded for today.", pd.read_csv(LEADERBOARD_CSV)
|
| 40 |
score = run_evaluation(pred_file.name)
|
| 41 |
if os.path.exists(LEADERBOARD_CSV):
|
| 42 |
df = pd.read_csv(LEADERBOARD_CSV)
|
|
|
|
| 50 |
with gr.Blocks() as demo:
|
| 51 |
gr.Markdown("# 🧊 3D IoU Challenge")
|
| 52 |
name = gr.Textbox(label="Username")
|
| 53 |
+
upload = gr.File(label="Upload your prediction (.json)")
|
| 54 |
score_text = gr.Textbox(label="Evaluation score")
|
| 55 |
leaderboard = gr.Dataframe(headers=["Name", "Score"], interactive=False)
|
| 56 |
|
evaluate.py
CHANGED
|
@@ -1,16 +1,11 @@
|
|
| 1 |
-
from datasets import load_dataset
|
| 2 |
import numpy as np
|
| 3 |
-
import
|
| 4 |
-
from
|
| 5 |
|
| 6 |
def run_evaluation(pred_path):
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
gt_boxes = torch.tensor(dataset[0]["boxes"]).float().unsqueeze(0)
|
| 12 |
-
|
| 13 |
-
iou_matrix, _ = box3d_overlap(pred_boxes, gt_boxes)
|
| 14 |
-
iou = iou_matrix.diagonal(dim1=1, dim2=2).mean()
|
| 15 |
-
|
| 16 |
-
return float(iou)
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
+
import json
|
| 3 |
+
from vg_evaluator import evaluation_for_challenge
|
| 4 |
|
| 5 |
def run_evaluation(pred_path):
|
| 6 |
+
pred_ = json.load(open(pred_path))
|
| 7 |
+
gt_ = json.load(open('test_annotations_mmscan.json'))
|
| 8 |
+
results = evaluation_for_challenge(gt_,pred_)
|
| 9 |
+
|
| 10 |
|
| 11 |
+
return results['gTop-[email protected]']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
leaderboard.csv
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name,score
|
| 2 |
+
aaa,0.1947003033781529
|
| 3 |
+
eee,0.0
|
| 4 |
+
sss,0.0
|
| 5 |
+
sss,0.0
|
| 6 |
+
sss,0.0
|
| 7 |
+
sss,0.0
|
| 8 |
+
sss,0.0
|
| 9 |
+
sss,0.0
|
| 10 |
+
sss,0.0
|
| 11 |
+
bbb,0.0
|
| 12 |
+
aaa,0.0
|
mmscan_utils/box_metric.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from scipy.optimize import linear_sum_assignment
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def average_precision(recalls: np.ndarray,
|
| 9 |
+
precisions: np.ndarray,
|
| 10 |
+
mode: str = 'area') -> np.ndarray:
|
| 11 |
+
"""Calculate average precision (for single or multiple scales).
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
recalls (np.ndarray): Recalls with shape of (num_scales, num_dets)
|
| 15 |
+
or (num_dets, ).
|
| 16 |
+
precisions (np.ndarray): Precisions with shape of
|
| 17 |
+
(num_scales, num_dets) or (num_dets, ).
|
| 18 |
+
mode (str): 'area' or '11points', 'area' means calculating the area
|
| 19 |
+
under precision-recall curve, '11points' means calculating
|
| 20 |
+
the average precision of recalls at [0, 0.1, ..., 1]
|
| 21 |
+
Defaults to 'area'.
|
| 22 |
+
|
| 23 |
+
Returns:
|
| 24 |
+
np.ndarray: Calculated average precision.
|
| 25 |
+
"""
|
| 26 |
+
if recalls.ndim == 1:
|
| 27 |
+
recalls = recalls[np.newaxis, :]
|
| 28 |
+
precisions = precisions[np.newaxis, :]
|
| 29 |
+
|
| 30 |
+
assert recalls.shape == precisions.shape
|
| 31 |
+
assert recalls.ndim == 2
|
| 32 |
+
|
| 33 |
+
num_scales = recalls.shape[0]
|
| 34 |
+
ap = np.zeros(num_scales, dtype=np.float32)
|
| 35 |
+
|
| 36 |
+
if mode == 'area':
|
| 37 |
+
zeros = np.zeros((num_scales, 1), dtype=recalls.dtype)
|
| 38 |
+
ones = np.ones((num_scales, 1), dtype=recalls.dtype)
|
| 39 |
+
mrec = np.hstack((zeros, recalls, ones))
|
| 40 |
+
mpre = np.hstack((zeros, precisions, zeros))
|
| 41 |
+
for i in range(mpre.shape[1] - 1, 0, -1):
|
| 42 |
+
mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i])
|
| 43 |
+
for i in range(num_scales):
|
| 44 |
+
ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0]
|
| 45 |
+
ap[i] = np.sum(
|
| 46 |
+
(mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1])
|
| 47 |
+
|
| 48 |
+
elif mode == '11points':
|
| 49 |
+
for i in range(num_scales):
|
| 50 |
+
for thr in np.arange(0, 1 + 1e-3, 0.1):
|
| 51 |
+
precs = precisions[i, recalls[i, :] >= thr]
|
| 52 |
+
prec = precs.max() if precs.size > 0 else 0
|
| 53 |
+
ap[i] += prec
|
| 54 |
+
ap /= 11
|
| 55 |
+
else:
|
| 56 |
+
raise ValueError(
|
| 57 |
+
'Unrecognized mode, only "area" and "11points" are supported')
|
| 58 |
+
return ap
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_f1_scores(iou_matrix: Union[np.ndarray, torch.tensor],
|
| 62 |
+
iou_threshold) -> float:
|
| 63 |
+
"""Refer to the algorithm in Multi3DRefer to compute the F1 score.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
iou_matrix (ndarray/tensor):
|
| 67 |
+
The iou matrix of the predictions and ground truths with
|
| 68 |
+
shape (num_preds , num_gts)
|
| 69 |
+
iou_threshold (float): 0.25/0.5
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
float: the f1 score as the result
|
| 73 |
+
"""
|
| 74 |
+
iou_thr_tp = 0
|
| 75 |
+
pred_bboxes_count, gt_bboxes_count = iou_matrix.shape
|
| 76 |
+
|
| 77 |
+
square_matrix_len = max(gt_bboxes_count, pred_bboxes_count)
|
| 78 |
+
iou_matrix_fill = np.zeros(shape=(square_matrix_len, square_matrix_len),
|
| 79 |
+
dtype=np.float32)
|
| 80 |
+
iou_matrix_fill[:pred_bboxes_count, :gt_bboxes_count] = iou_matrix
|
| 81 |
+
|
| 82 |
+
# apply matching algorithm
|
| 83 |
+
row_idx, col_idx = linear_sum_assignment(iou_matrix_fill * -1)
|
| 84 |
+
|
| 85 |
+
# iterate matched pairs, check ious
|
| 86 |
+
for i in range(pred_bboxes_count):
|
| 87 |
+
iou = iou_matrix[row_idx[i], col_idx[i]]
|
| 88 |
+
# calculate true positives
|
| 89 |
+
if iou >= iou_threshold:
|
| 90 |
+
iou_thr_tp += 1
|
| 91 |
+
|
| 92 |
+
# calculate precision, recall and f1-score for the current scene
|
| 93 |
+
f1_score = 2 * iou_thr_tp / (pred_bboxes_count + gt_bboxes_count)
|
| 94 |
+
|
| 95 |
+
return f1_score
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def __get_fp_tp_array__(iou_array: Union[np.ndarray, torch.tensor],
|
| 99 |
+
iou_threshold: float) \
|
| 100 |
+
-> Tuple[np.ndarray, np.ndarray]:
|
| 101 |
+
"""Compute the False-positive and True-positive array for each prediction.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
iou_array (ndarray/tensor):
|
| 105 |
+
the iou matrix of the predictions and ground truths
|
| 106 |
+
(shape num_preds, num_gts)
|
| 107 |
+
iou_threshold (float): 0.25/0.5
|
| 108 |
+
|
| 109 |
+
Returns:
|
| 110 |
+
np.ndarray, np.ndarray: (len(preds)),
|
| 111 |
+
the false-positive and true-positive array for each prediction.
|
| 112 |
+
"""
|
| 113 |
+
gt_matched_records = np.zeros((len(iou_array[0])), dtype=bool)
|
| 114 |
+
tp_thr = np.zeros((len(iou_array)))
|
| 115 |
+
fp_thr = np.zeros((len(iou_array)))
|
| 116 |
+
|
| 117 |
+
for d, _ in enumerate(range(len(iou_array))):
|
| 118 |
+
iou_max = -np.inf
|
| 119 |
+
cur_iou = iou_array[d]
|
| 120 |
+
num_gts = cur_iou.shape[0]
|
| 121 |
+
|
| 122 |
+
if num_gts > 0:
|
| 123 |
+
for j in range(num_gts):
|
| 124 |
+
iou = cur_iou[j]
|
| 125 |
+
if iou > iou_max:
|
| 126 |
+
iou_max = iou
|
| 127 |
+
jmax = j
|
| 128 |
+
|
| 129 |
+
if iou_max >= iou_threshold:
|
| 130 |
+
if not gt_matched_records[jmax]:
|
| 131 |
+
gt_matched_records[jmax] = True
|
| 132 |
+
tp_thr[d] = 1.0
|
| 133 |
+
else:
|
| 134 |
+
fp_thr[d] = 1.0
|
| 135 |
+
else:
|
| 136 |
+
fp_thr[d] = 1.0
|
| 137 |
+
|
| 138 |
+
return fp_thr, tp_thr
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def subset_get_average_precision(subset_results: dict,
|
| 142 |
+
iou_thr: float)\
|
| 143 |
+
-> Tuple[np.ndarray, np.ndarray]:
|
| 144 |
+
"""Return the average precision and max recall for a given iou array,
|
| 145 |
+
"subset" version while the num_gt of each sample may differ.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
subset_results (dict):
|
| 149 |
+
The results, consisting of scores, sample_indices, ious.
|
| 150 |
+
sample_indices means which sample the prediction belongs to.
|
| 151 |
+
iou_threshold (float): 0.25/0.5
|
| 152 |
+
|
| 153 |
+
Returns:
|
| 154 |
+
Tuple[np.ndarray, np.ndarray]: the average precision and max recall.
|
| 155 |
+
"""
|
| 156 |
+
confidences = subset_results['scores']
|
| 157 |
+
sample_indices = subset_results['sample_indices']
|
| 158 |
+
ious = subset_results['ious']
|
| 159 |
+
gt_matched_records = {}
|
| 160 |
+
total_gt_boxes = 0
|
| 161 |
+
for i, sample_idx in enumerate(sample_indices):
|
| 162 |
+
if sample_idx not in gt_matched_records:
|
| 163 |
+
gt_matched_records[sample_idx] = np.zeros((len(ious[i]), ),
|
| 164 |
+
dtype=bool)
|
| 165 |
+
total_gt_boxes += ious[i].shape[0]
|
| 166 |
+
|
| 167 |
+
confidences = np.array(confidences)
|
| 168 |
+
sorted_inds = np.argsort(-confidences)
|
| 169 |
+
sample_indices = [sample_indices[i] for i in sorted_inds]
|
| 170 |
+
ious = [ious[i] for i in sorted_inds]
|
| 171 |
+
|
| 172 |
+
tp_thr = np.zeros(len(sample_indices))
|
| 173 |
+
fp_thr = np.zeros(len(sample_indices))
|
| 174 |
+
|
| 175 |
+
for d, sample_idx in enumerate(sample_indices):
|
| 176 |
+
iou_max = -np.inf
|
| 177 |
+
cur_iou = ious[d]
|
| 178 |
+
num_gts = cur_iou.shape[0]
|
| 179 |
+
if num_gts > 0:
|
| 180 |
+
for j in range(num_gts):
|
| 181 |
+
iou = cur_iou[j]
|
| 182 |
+
if iou > iou_max:
|
| 183 |
+
iou_max = iou
|
| 184 |
+
jmax = j
|
| 185 |
+
|
| 186 |
+
if iou_max >= iou_thr:
|
| 187 |
+
if not gt_matched_records[sample_idx][jmax]:
|
| 188 |
+
gt_matched_records[sample_idx][jmax] = True
|
| 189 |
+
tp_thr[d] = 1.0
|
| 190 |
+
else:
|
| 191 |
+
fp_thr[d] = 1.0
|
| 192 |
+
else:
|
| 193 |
+
fp_thr[d] = 1.0
|
| 194 |
+
|
| 195 |
+
fp = np.cumsum(fp_thr)
|
| 196 |
+
tp = np.cumsum(tp_thr)
|
| 197 |
+
recall = tp / float(total_gt_boxes)
|
| 198 |
+
precision = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
|
| 199 |
+
|
| 200 |
+
return average_precision(recall, precision), np.max(recall)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def get_average_precision(iou_array: np.ndarray, iou_threshold: float) \
|
| 204 |
+
-> Tuple[np.ndarray, np.ndarray]:
|
| 205 |
+
"""Return the average precision and max recall for a given iou array.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
iou_array (ndarray/tensor):
|
| 209 |
+
The iou matrix of the predictions and ground truths
|
| 210 |
+
(shape len(preds)*len(gts))
|
| 211 |
+
iou_threshold (float): 0.25/0.5
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
Tuple[np.ndarray, np.ndarray]: the average precision and max recall.
|
| 215 |
+
"""
|
| 216 |
+
fp, tp = __get_fp_tp_array__(iou_array, iou_threshold)
|
| 217 |
+
fp_cum = np.cumsum(fp)
|
| 218 |
+
tp_cum = np.cumsum(tp)
|
| 219 |
+
recall = tp_cum / float(iou_array.shape[1])
|
| 220 |
+
precision = tp_cum / np.maximum(tp_cum + fp_cum, np.finfo(np.float64).eps)
|
| 221 |
+
|
| 222 |
+
return average_precision(recall, precision), np.max(recall)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def get_general_topk_scores(iou_array: Union[np.ndarray, torch.tensor],
|
| 226 |
+
iou_threshold: float,
|
| 227 |
+
mode: str = 'sigma') -> Dict[str, float]:
|
| 228 |
+
"""Compute the multi-topk metric, we provide two modes.
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
iou_array (ndarray/tensor):
|
| 232 |
+
the iou matrix of the predictions and ground truths
|
| 233 |
+
(shape len(preds)*len(gts))
|
| 234 |
+
iou_threshold (float): 0.25/0.5
|
| 235 |
+
mode (str): 'sigma'/'simple'
|
| 236 |
+
"simple": 1/N * Hit(min(N*k,len(pred)))
|
| 237 |
+
"sigma": 1/N * Sigma [Hit(min(n*k,len(pred)))>=n] n = 1~N
|
| 238 |
+
Hit(M) return the number of gtound truths hitted by
|
| 239 |
+
the first M predictions.
|
| 240 |
+
N = the number of gtound truths
|
| 241 |
+
Default to 'sigma'.
|
| 242 |
+
|
| 243 |
+
Returns:
|
| 244 |
+
Dict[str,float]: the score of multi-topk metric.
|
| 245 |
+
"""
|
| 246 |
+
|
| 247 |
+
assert mode in ['sigma', 'simple']
|
| 248 |
+
topk_scores = []
|
| 249 |
+
gt_matched_records = np.zeros(len(iou_array[0]))
|
| 250 |
+
num_gt = len(gt_matched_records)
|
| 251 |
+
for d, _ in enumerate(range(len(iou_array))):
|
| 252 |
+
iou_max = -np.inf
|
| 253 |
+
cur_iou = iou_array[d]
|
| 254 |
+
|
| 255 |
+
for j in range(len(iou_array[d])):
|
| 256 |
+
iou = cur_iou[j]
|
| 257 |
+
if iou > iou_max:
|
| 258 |
+
iou_max = iou
|
| 259 |
+
j_max = j
|
| 260 |
+
if iou_max >= iou_threshold:
|
| 261 |
+
gt_matched_records[j_max] = True
|
| 262 |
+
topk_scores.append(gt_matched_records.copy())
|
| 263 |
+
|
| 264 |
+
topk_results = {}
|
| 265 |
+
for topk in [1, 3, 5, 10]:
|
| 266 |
+
if mode == 'sigma':
|
| 267 |
+
scores = [
|
| 268 |
+
int(
|
| 269 |
+
np.sum(topk_scores[min(n * topk, len(topk_scores)) -
|
| 270 |
+
1]) >= n) for n in range(1, num_gt + 1)
|
| 271 |
+
]
|
| 272 |
+
result = np.sum(scores) / num_gt
|
| 273 |
+
else:
|
| 274 |
+
query_index = min(num_gt * topk, len(topk_scores)) - 1
|
| 275 |
+
result = np.sum(topk_scores[query_index]) / num_gt
|
| 276 |
+
topk_results[f'gTop-{topk}@{iou_threshold}'] = result
|
| 277 |
+
return topk_results
|
mmscan_utils/box_utils.py
ADDED
|
@@ -0,0 +1,1079 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from abc import abstractmethod
|
| 2 |
+
from typing import List,Iterator, Optional, Sequence, Tuple, Union
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
try:
|
| 8 |
+
from pytorch3d.ops import box3d_overlap
|
| 9 |
+
from pytorch3d.transforms import (euler_angles_to_matrix,
|
| 10 |
+
matrix_to_euler_angles)
|
| 11 |
+
except ImportError:
|
| 12 |
+
box3d_overlap = None
|
| 13 |
+
euler_angles_to_matrix = None
|
| 14 |
+
matrix_to_euler_angles = None
|
| 15 |
+
from torch import Tensor
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class BaseInstance3DBoxes:
|
| 19 |
+
"""Base class for 3D Boxes.
|
| 20 |
+
|
| 21 |
+
Note:
|
| 22 |
+
The box is bottom centered, i.e. the relative position of origin in the
|
| 23 |
+
box is (0.5, 0.5, 0).
|
| 24 |
+
|
| 25 |
+
Args:
|
| 26 |
+
tensor (Tensor or np.ndarray or Sequence[Sequence[float]]): The boxes
|
| 27 |
+
data with shape (N, box_dim).
|
| 28 |
+
box_dim (int): Number of the dimension of a box. Each row is
|
| 29 |
+
(x, y, z, x_size, y_size, z_size, yaw). Defaults to 7.
|
| 30 |
+
with_yaw (bool): Whether the box is with yaw rotation. If False, the
|
| 31 |
+
value of yaw will be set to 0 as minmax boxes. Defaults to True.
|
| 32 |
+
origin (Tuple[float]): Relative position of the box origin.
|
| 33 |
+
Defaults to (0.5, 0.5, 0). This will guide the box be converted to
|
| 34 |
+
(0.5, 0.5, 0) mode.
|
| 35 |
+
|
| 36 |
+
Attributes:
|
| 37 |
+
tensor (Tensor): Float matrix with shape (N, box_dim).
|
| 38 |
+
box_dim (int): Integer indicating the dimension of a box. Each row is
|
| 39 |
+
(x, y, z, x_size, y_size, z_size, yaw, ...).
|
| 40 |
+
with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
|
| 41 |
+
boxes.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
YAW_AXIS: int = 0
|
| 45 |
+
|
| 46 |
+
def __init__(
|
| 47 |
+
self,
|
| 48 |
+
tensor: Union[Tensor, np.ndarray, Sequence[Sequence[float]]],
|
| 49 |
+
box_dim: int = 7,
|
| 50 |
+
with_yaw: bool = True,
|
| 51 |
+
origin: Tuple[float, float, float] = (0.5, 0.5, 0)
|
| 52 |
+
) -> None:
|
| 53 |
+
if isinstance(tensor, Tensor):
|
| 54 |
+
device = tensor.device
|
| 55 |
+
else:
|
| 56 |
+
device = torch.device('cpu')
|
| 57 |
+
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
|
| 58 |
+
if tensor.numel() == 0:
|
| 59 |
+
# Use reshape, so we don't end up creating a new tensor that does
|
| 60 |
+
# not depend on the inputs (and consequently confuses jit)
|
| 61 |
+
tensor = tensor.reshape((-1, box_dim))
|
| 62 |
+
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, \
|
| 63 |
+
('The box dimension must be 2 and the length of the last '
|
| 64 |
+
f'dimension must be {box_dim}, but got boxes with shape '
|
| 65 |
+
f'{tensor.shape}.')
|
| 66 |
+
|
| 67 |
+
if tensor.shape[-1] == 6:
|
| 68 |
+
# If the dimension of boxes is 6, we expand box_dim by padding 0 as
|
| 69 |
+
# a fake yaw and set with_yaw to False
|
| 70 |
+
assert box_dim == 6
|
| 71 |
+
fake_rot = tensor.new_zeros(tensor.shape[0], 1)
|
| 72 |
+
tensor = torch.cat((tensor, fake_rot), dim=-1)
|
| 73 |
+
self.box_dim = box_dim + 1
|
| 74 |
+
self.with_yaw = False
|
| 75 |
+
else:
|
| 76 |
+
self.box_dim = box_dim
|
| 77 |
+
self.with_yaw = with_yaw
|
| 78 |
+
self.tensor = tensor.clone()
|
| 79 |
+
|
| 80 |
+
if origin != (0.5, 0.5, 0):
|
| 81 |
+
dst = self.tensor.new_tensor((0.5, 0.5, 0))
|
| 82 |
+
src = self.tensor.new_tensor(origin)
|
| 83 |
+
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
|
| 84 |
+
|
| 85 |
+
@property
|
| 86 |
+
def shape(self) -> torch.Size:
|
| 87 |
+
"""torch.Size: Shape of boxes."""
|
| 88 |
+
return self.tensor.shape
|
| 89 |
+
|
| 90 |
+
@property
|
| 91 |
+
def volume(self) -> Tensor:
|
| 92 |
+
"""Tensor: A vector with volume of each box in shape (N, )."""
|
| 93 |
+
return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def dims(self) -> Tensor:
|
| 97 |
+
"""Tensor: Size dimensions of each box in shape (N, 3)."""
|
| 98 |
+
return self.tensor[:, 3:6]
|
| 99 |
+
|
| 100 |
+
@property
|
| 101 |
+
def yaw(self) -> Tensor:
|
| 102 |
+
"""Tensor: A vector with yaw of each box in shape (N, )."""
|
| 103 |
+
return self.tensor[:, 6]
|
| 104 |
+
|
| 105 |
+
@property
|
| 106 |
+
def height(self) -> Tensor:
|
| 107 |
+
"""Tensor: A vector with height of each box in shape (N, )."""
|
| 108 |
+
return self.tensor[:, 5]
|
| 109 |
+
|
| 110 |
+
@property
|
| 111 |
+
def top_height(self) -> Tensor:
|
| 112 |
+
"""Tensor: A vector with top height of each box in shape (N, )."""
|
| 113 |
+
return self.bottom_height + self.height
|
| 114 |
+
|
| 115 |
+
@property
|
| 116 |
+
def bottom_height(self) -> Tensor:
|
| 117 |
+
"""Tensor: A vector with bottom height of each box in shape (N, )."""
|
| 118 |
+
return self.tensor[:, 2]
|
| 119 |
+
|
| 120 |
+
@property
|
| 121 |
+
def center(self) -> Tensor:
|
| 122 |
+
"""Calculate the center of all the boxes.
|
| 123 |
+
|
| 124 |
+
Note:
|
| 125 |
+
In MMDetection3D's convention, the bottom center is usually taken
|
| 126 |
+
as the default center.
|
| 127 |
+
|
| 128 |
+
The relative position of the centers in different kinds of boxes
|
| 129 |
+
are different, e.g., the relative center of a boxes is
|
| 130 |
+
(0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is
|
| 131 |
+
recommended to use ``bottom_center`` or ``gravity_center`` for
|
| 132 |
+
clearer usage.
|
| 133 |
+
|
| 134 |
+
Returns:
|
| 135 |
+
Tensor: A tensor with center of each box in shape (N, 3).
|
| 136 |
+
"""
|
| 137 |
+
return self.bottom_center
|
| 138 |
+
|
| 139 |
+
@property
|
| 140 |
+
def bottom_center(self) -> Tensor:
|
| 141 |
+
"""Tensor: A tensor with center of each box in shape (N, 3)."""
|
| 142 |
+
return self.tensor[:, :3]
|
| 143 |
+
|
| 144 |
+
@property
|
| 145 |
+
def gravity_center(self) -> Tensor:
|
| 146 |
+
"""Tensor: A tensor with center of each box in shape (N, 3)."""
|
| 147 |
+
bottom_center = self.bottom_center
|
| 148 |
+
gravity_center = torch.zeros_like(bottom_center)
|
| 149 |
+
gravity_center[:, :2] = bottom_center[:, :2]
|
| 150 |
+
gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5
|
| 151 |
+
return gravity_center
|
| 152 |
+
|
| 153 |
+
@property
|
| 154 |
+
def corners(self) -> Tensor:
|
| 155 |
+
"""Tensor: A tensor with 8 corners of each box in shape (N, 8, 3)."""
|
| 156 |
+
pass
|
| 157 |
+
|
| 158 |
+
@property
|
| 159 |
+
def bev(self) -> Tensor:
|
| 160 |
+
"""Tensor: 2D BEV box of each box with rotation in XYWHR format, in
|
| 161 |
+
shape (N, 5)."""
|
| 162 |
+
return self.tensor[:, [0, 1, 3, 4, 6]]
|
| 163 |
+
|
| 164 |
+
def in_range_bev(
|
| 165 |
+
self, box_range: Union[Tensor, np.ndarray,
|
| 166 |
+
Sequence[float]]) -> Tensor:
|
| 167 |
+
"""Check whether the boxes are in the given range.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
box_range (Tensor or np.ndarray or Sequence[float]): The range of
|
| 171 |
+
box in order of (x_min, y_min, x_max, y_max).
|
| 172 |
+
|
| 173 |
+
Note:
|
| 174 |
+
The original implementation of SECOND checks whether boxes in a
|
| 175 |
+
range by checking whether the points are in a convex polygon, we
|
| 176 |
+
reduce the burden for simpler cases.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
Tensor: A binary vector indicating whether each box is inside the
|
| 180 |
+
reference range.
|
| 181 |
+
"""
|
| 182 |
+
in_range_flags = ((self.bev[:, 0] > box_range[0])
|
| 183 |
+
& (self.bev[:, 1] > box_range[1])
|
| 184 |
+
& (self.bev[:, 0] < box_range[2])
|
| 185 |
+
& (self.bev[:, 1] < box_range[3]))
|
| 186 |
+
return in_range_flags
|
| 187 |
+
|
| 188 |
+
@abstractmethod
|
| 189 |
+
def rotate(
|
| 190 |
+
self,
|
| 191 |
+
angle: Union[Tensor, np.ndarray, float],
|
| 192 |
+
points: Optional[Union[Tensor, np.ndarray]] = None
|
| 193 |
+
) -> Union[Tuple[Tensor, Tensor], Tuple[np.ndarray, np.ndarray],
|
| 194 |
+
Tuple[Tensor], None]:
|
| 195 |
+
"""Rotate boxes with points (optional) with the given angle or rotation
|
| 196 |
+
matrix.
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
angle (Tensor or np.ndarray or float): Rotation angle or rotation
|
| 200 |
+
matrix.
|
| 201 |
+
points (Tensor or np.ndarray or :obj:``, optional):
|
| 202 |
+
Points to rotate. Defaults to None.
|
| 203 |
+
|
| 204 |
+
Returns:
|
| 205 |
+
tuple or None: When ``points`` is None, the function returns None,
|
| 206 |
+
otherwise it returns the rotated points and the rotation matrix
|
| 207 |
+
``rot_mat_T``.
|
| 208 |
+
"""
|
| 209 |
+
pass
|
| 210 |
+
|
| 211 |
+
@abstractmethod
|
| 212 |
+
def flip(
|
| 213 |
+
self,
|
| 214 |
+
bev_direction: str = 'horizontal',
|
| 215 |
+
points: Optional[Union[Tensor, np.ndarray, ]] = None
|
| 216 |
+
) -> Union[Tensor, np.ndarray, None]:
|
| 217 |
+
"""Flip the boxes in BEV along given BEV direction.
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
bev_direction (str): Direction by which to flip. Can be chosen from
|
| 221 |
+
'horizontal' and 'vertical'. Defaults to 'horizontal'.
|
| 222 |
+
points (Tensor or np.ndarray or :obj:``, optional):
|
| 223 |
+
Points to flip. Defaults to None.
|
| 224 |
+
|
| 225 |
+
Returns:
|
| 226 |
+
Tensor or np.ndarray or :obj:`` or None: When ``points``
|
| 227 |
+
is None, the function returns None, otherwise it returns the
|
| 228 |
+
flipped points.
|
| 229 |
+
"""
|
| 230 |
+
pass
|
| 231 |
+
|
| 232 |
+
def translate(self, trans_vector: Union[Tensor, np.ndarray]) -> None:
|
| 233 |
+
"""Translate boxes with the given translation vector.
|
| 234 |
+
|
| 235 |
+
Args:
|
| 236 |
+
trans_vector (Tensor or np.ndarray): Translation vector of size
|
| 237 |
+
1x3.
|
| 238 |
+
"""
|
| 239 |
+
if not isinstance(trans_vector, Tensor):
|
| 240 |
+
trans_vector = self.tensor.new_tensor(trans_vector)
|
| 241 |
+
self.tensor[:, :3] += trans_vector
|
| 242 |
+
|
| 243 |
+
def in_range_3d(
|
| 244 |
+
self, box_range: Union[Tensor, np.ndarray,
|
| 245 |
+
Sequence[float]]) -> Tensor:
|
| 246 |
+
"""Check whether the boxes are in the given range.
|
| 247 |
+
|
| 248 |
+
Args:
|
| 249 |
+
box_range (Tensor or np.ndarray or Sequence[float]): The range of
|
| 250 |
+
box (x_min, y_min, z_min, x_max, y_max, z_max).
|
| 251 |
+
|
| 252 |
+
Note:
|
| 253 |
+
In the original implementation of SECOND, checking whether a box in
|
| 254 |
+
the range checks whether the points are in a convex polygon, we try
|
| 255 |
+
to reduce the burden for simpler cases.
|
| 256 |
+
|
| 257 |
+
Returns:
|
| 258 |
+
Tensor: A binary vector indicating whether each point is inside the
|
| 259 |
+
reference range.
|
| 260 |
+
"""
|
| 261 |
+
in_range_flags = ((self.tensor[:, 0] > box_range[0])
|
| 262 |
+
& (self.tensor[:, 1] > box_range[1])
|
| 263 |
+
& (self.tensor[:, 2] > box_range[2])
|
| 264 |
+
& (self.tensor[:, 0] < box_range[3])
|
| 265 |
+
& (self.tensor[:, 1] < box_range[4])
|
| 266 |
+
& (self.tensor[:, 2] < box_range[5]))
|
| 267 |
+
return in_range_flags
|
| 268 |
+
|
| 269 |
+
@abstractmethod
|
| 270 |
+
def convert_to(self,
|
| 271 |
+
dst: int,
|
| 272 |
+
rt_mat: Optional[Union[Tensor, np.ndarray]] = None,
|
| 273 |
+
correct_yaw: bool = False) -> 'BaseInstance3DBoxes':
|
| 274 |
+
"""Convert self to ``dst`` mode.
|
| 275 |
+
|
| 276 |
+
Args:
|
| 277 |
+
dst (int): The target Box mode.
|
| 278 |
+
rt_mat (Tensor or np.ndarray, optional): The rotation and
|
| 279 |
+
translation matrix between different coordinates.
|
| 280 |
+
Defaults to None. The conversion from ``src`` coordinates to
|
| 281 |
+
``dst`` coordinates usually comes along the change of sensors,
|
| 282 |
+
e.g., from camera to LiDAR. This requires a transformation
|
| 283 |
+
matrix.
|
| 284 |
+
correct_yaw (bool): Whether to convert the yaw angle to the target
|
| 285 |
+
coordinate. Defaults to False.
|
| 286 |
+
|
| 287 |
+
Returns:
|
| 288 |
+
:obj:`BaseInstance3DBoxes`: The converted box of the same type in
|
| 289 |
+
the ``dst`` mode.
|
| 290 |
+
"""
|
| 291 |
+
pass
|
| 292 |
+
|
| 293 |
+
def scale(self, scale_factor: float) -> None:
|
| 294 |
+
"""Scale the box with horizontal and vertical scaling factors.
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
scale_factors (float): Scale factors to scale the boxes.
|
| 298 |
+
"""
|
| 299 |
+
self.tensor[:, :6] *= scale_factor
|
| 300 |
+
self.tensor[:, 7:] *= scale_factor # velocity
|
| 301 |
+
|
| 302 |
+
def nonempty(self, threshold: float = 0.0) -> Tensor:
|
| 303 |
+
"""Find boxes that are non-empty.
|
| 304 |
+
|
| 305 |
+
A box is considered empty if either of its side is no larger than
|
| 306 |
+
threshold.
|
| 307 |
+
|
| 308 |
+
Args:
|
| 309 |
+
threshold (float): The threshold of minimal sizes. Defaults to 0.0.
|
| 310 |
+
|
| 311 |
+
Returns:
|
| 312 |
+
Tensor: A binary vector which represents whether each box is empty
|
| 313 |
+
(False) or non-empty (True).
|
| 314 |
+
"""
|
| 315 |
+
box = self.tensor
|
| 316 |
+
size_x = box[..., 3]
|
| 317 |
+
size_y = box[..., 4]
|
| 318 |
+
size_z = box[..., 5]
|
| 319 |
+
keep = ((size_x > threshold)
|
| 320 |
+
& (size_y > threshold) & (size_z > threshold))
|
| 321 |
+
return keep
|
| 322 |
+
|
| 323 |
+
def __getitem__(
|
| 324 |
+
self, item: Union[int, slice, np.ndarray,
|
| 325 |
+
Tensor]) -> 'BaseInstance3DBoxes':
|
| 326 |
+
"""
|
| 327 |
+
Args:
|
| 328 |
+
item (int or slice or np.ndarray or Tensor): Index of boxes.
|
| 329 |
+
|
| 330 |
+
Note:
|
| 331 |
+
The following usage are allowed:
|
| 332 |
+
|
| 333 |
+
1. `new_boxes = boxes[3]`: Return a `Boxes` that contains only one
|
| 334 |
+
box.
|
| 335 |
+
2. `new_boxes = boxes[2:10]`: Return a slice of boxes.
|
| 336 |
+
3. `new_boxes = boxes[vector]`: Where vector is a
|
| 337 |
+
torch.BoolTensor with `length = len(boxes)`. Nonzero elements in
|
| 338 |
+
the vector will be selected.
|
| 339 |
+
|
| 340 |
+
Note that the returned Boxes might share storage with this Boxes,
|
| 341 |
+
subject to PyTorch's indexing semantics.
|
| 342 |
+
|
| 343 |
+
Returns:
|
| 344 |
+
:obj:`BaseInstance3DBoxes`: A new object of
|
| 345 |
+
:class:`BaseInstance3DBoxes` after indexing.
|
| 346 |
+
"""
|
| 347 |
+
original_type = type(self)
|
| 348 |
+
if isinstance(item, int):
|
| 349 |
+
return original_type(self.tensor[item].view(1, -1),
|
| 350 |
+
box_dim=self.box_dim,
|
| 351 |
+
with_yaw=self.with_yaw)
|
| 352 |
+
b = self.tensor[item]
|
| 353 |
+
assert b.dim() == 2, \
|
| 354 |
+
f'Indexing on Boxes with {item} failed to return a matrix!'
|
| 355 |
+
return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)
|
| 356 |
+
|
| 357 |
+
def __len__(self) -> int:
|
| 358 |
+
"""int: Number of boxes in the current object."""
|
| 359 |
+
return self.tensor.shape[0]
|
| 360 |
+
|
| 361 |
+
def __repr__(self) -> str:
|
| 362 |
+
"""str: Return a string that describes the object."""
|
| 363 |
+
return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')'
|
| 364 |
+
|
| 365 |
+
@classmethod
|
| 366 |
+
def cat(cls, boxes_list: Sequence['BaseInstance3DBoxes']
|
| 367 |
+
) -> 'BaseInstance3DBoxes':
|
| 368 |
+
"""Concatenate a list of Boxes into a single Boxes.
|
| 369 |
+
|
| 370 |
+
Args:
|
| 371 |
+
boxes_list (Sequence[:obj:`BaseInstance3DBoxes`]): List of boxes.
|
| 372 |
+
|
| 373 |
+
Returns:
|
| 374 |
+
:obj:`BaseInstance3DBoxes`: The concatenated boxes.
|
| 375 |
+
"""
|
| 376 |
+
assert isinstance(boxes_list, (list, tuple))
|
| 377 |
+
if len(boxes_list) == 0:
|
| 378 |
+
return cls(torch.empty(0))
|
| 379 |
+
assert all(isinstance(box, cls) for box in boxes_list)
|
| 380 |
+
|
| 381 |
+
# use torch.cat (v.s. layers.cat)
|
| 382 |
+
# so the returned boxes never share storage with input
|
| 383 |
+
cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0),
|
| 384 |
+
box_dim=boxes_list[0].box_dim,
|
| 385 |
+
with_yaw=boxes_list[0].with_yaw)
|
| 386 |
+
return cat_boxes
|
| 387 |
+
|
| 388 |
+
def numpy(self) -> np.ndarray:
|
| 389 |
+
"""Reload ``numpy`` from self.tensor."""
|
| 390 |
+
return self.tensor.numpy()
|
| 391 |
+
|
| 392 |
+
def to(self, device: Union[str, torch.device], *args,
|
| 393 |
+
**kwargs) -> 'BaseInstance3DBoxes':
|
| 394 |
+
"""Convert current boxes to a specific device.
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
device (str or :obj:`torch.device`): The name of the device.
|
| 398 |
+
|
| 399 |
+
Returns:
|
| 400 |
+
:obj:`BaseInstance3DBoxes`: A new boxes object on the specific
|
| 401 |
+
device.
|
| 402 |
+
"""
|
| 403 |
+
original_type = type(self)
|
| 404 |
+
return original_type(self.tensor.to(device, *args, **kwargs),
|
| 405 |
+
box_dim=self.box_dim,
|
| 406 |
+
with_yaw=self.with_yaw)
|
| 407 |
+
|
| 408 |
+
def cpu(self) -> 'BaseInstance3DBoxes':
|
| 409 |
+
"""Convert current boxes to cpu device.
|
| 410 |
+
|
| 411 |
+
Returns:
|
| 412 |
+
:obj:`BaseInstance3DBoxes`: A new boxes object on the cpu device.
|
| 413 |
+
"""
|
| 414 |
+
original_type = type(self)
|
| 415 |
+
return original_type(self.tensor.cpu(),
|
| 416 |
+
box_dim=self.box_dim,
|
| 417 |
+
with_yaw=self.with_yaw)
|
| 418 |
+
|
| 419 |
+
def cuda(self, *args, **kwargs) -> 'BaseInstance3DBoxes':
|
| 420 |
+
"""Convert current boxes to cuda device.
|
| 421 |
+
|
| 422 |
+
Returns:
|
| 423 |
+
:obj:`BaseInstance3DBoxes`: A new boxes object on the cuda device.
|
| 424 |
+
"""
|
| 425 |
+
original_type = type(self)
|
| 426 |
+
return original_type(self.tensor.cuda(*args, **kwargs),
|
| 427 |
+
box_dim=self.box_dim,
|
| 428 |
+
with_yaw=self.with_yaw)
|
| 429 |
+
|
| 430 |
+
def clone(self) -> 'BaseInstance3DBoxes':
|
| 431 |
+
"""Clone the boxes.
|
| 432 |
+
|
| 433 |
+
Returns:
|
| 434 |
+
:obj:`BaseInstance3DBoxes`: Box object with the same properties as
|
| 435 |
+
self.
|
| 436 |
+
"""
|
| 437 |
+
original_type = type(self)
|
| 438 |
+
return original_type(self.tensor.clone(),
|
| 439 |
+
box_dim=self.box_dim,
|
| 440 |
+
with_yaw=self.with_yaw)
|
| 441 |
+
|
| 442 |
+
def detach(self) -> 'BaseInstance3DBoxes':
|
| 443 |
+
"""Detach the boxes.
|
| 444 |
+
|
| 445 |
+
Returns:
|
| 446 |
+
:obj:`BaseInstance3DBoxes`: Box object with the same properties as
|
| 447 |
+
self.
|
| 448 |
+
"""
|
| 449 |
+
original_type = type(self)
|
| 450 |
+
return original_type(self.tensor.detach(),
|
| 451 |
+
box_dim=self.box_dim,
|
| 452 |
+
with_yaw=self.with_yaw)
|
| 453 |
+
|
| 454 |
+
@property
|
| 455 |
+
def device(self) -> torch.device:
|
| 456 |
+
"""torch.device: The device of the boxes are on."""
|
| 457 |
+
return self.tensor.device
|
| 458 |
+
|
| 459 |
+
def __iter__(self) -> Iterator[Tensor]:
|
| 460 |
+
"""Yield a box as a Tensor at a time.
|
| 461 |
+
|
| 462 |
+
Returns:
|
| 463 |
+
Iterator[Tensor]: A box of shape (box_dim, ).
|
| 464 |
+
"""
|
| 465 |
+
yield from self.tensor
|
| 466 |
+
|
| 467 |
+
@classmethod
|
| 468 |
+
def height_overlaps(cls, boxes1: 'BaseInstance3DBoxes',
|
| 469 |
+
boxes2: 'BaseInstance3DBoxes') -> Tensor:
|
| 470 |
+
"""Calculate height overlaps of two boxes.
|
| 471 |
+
|
| 472 |
+
Note:
|
| 473 |
+
This function calculates the height overlaps between ``boxes1`` and
|
| 474 |
+
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
|
| 475 |
+
|
| 476 |
+
Args:
|
| 477 |
+
boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
|
| 478 |
+
boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
|
| 479 |
+
|
| 480 |
+
Returns:
|
| 481 |
+
Tensor: Calculated height overlap of the boxes.
|
| 482 |
+
"""
|
| 483 |
+
assert isinstance(boxes1, BaseInstance3DBoxes)
|
| 484 |
+
assert isinstance(boxes2, BaseInstance3DBoxes)
|
| 485 |
+
assert type(boxes1) == type(boxes2), \
|
| 486 |
+
'"boxes1" and "boxes2" should be in the same type, ' \
|
| 487 |
+
f'but got {type(boxes1)} and {type(boxes2)}.'
|
| 488 |
+
|
| 489 |
+
boxes1_top_height = boxes1.top_height.view(-1, 1)
|
| 490 |
+
boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
|
| 491 |
+
boxes2_top_height = boxes2.top_height.view(1, -1)
|
| 492 |
+
boxes2_bottom_height = boxes2.bottom_height.view(1, -1)
|
| 493 |
+
|
| 494 |
+
heighest_of_bottom = torch.max(boxes1_bottom_height,
|
| 495 |
+
boxes2_bottom_height)
|
| 496 |
+
lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
|
| 497 |
+
overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
|
| 498 |
+
return overlaps_h
|
| 499 |
+
|
| 500 |
+
def new_box(
|
| 501 |
+
self, data: Union[Tensor, np.ndarray, Sequence[Sequence[float]]]
|
| 502 |
+
) -> 'BaseInstance3DBoxes':
|
| 503 |
+
"""Create a new box object with data.
|
| 504 |
+
|
| 505 |
+
The new box and its tensor has the similar properties as self and
|
| 506 |
+
self.tensor, respectively.
|
| 507 |
+
|
| 508 |
+
Args:
|
| 509 |
+
data (Tensor or np.ndarray or Sequence[Sequence[float]]): Data to
|
| 510 |
+
be copied.
|
| 511 |
+
|
| 512 |
+
Returns:
|
| 513 |
+
:obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, the
|
| 514 |
+
object's other properties are similar to ``self``.
|
| 515 |
+
"""
|
| 516 |
+
new_tensor = self.tensor.new_tensor(data) \
|
| 517 |
+
if not isinstance(data, Tensor) else data.to(self.device)
|
| 518 |
+
original_type = type(self)
|
| 519 |
+
return original_type(new_tensor,
|
| 520 |
+
box_dim=self.box_dim,
|
| 521 |
+
with_yaw=self.with_yaw)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
class EulerInstance3DBoxes(BaseInstance3DBoxes):
|
| 525 |
+
"""3D boxes with 1-D orientation represented by three Euler angles.
|
| 526 |
+
|
| 527 |
+
See https://en.wikipedia.org/wiki/Euler_angles for
|
| 528 |
+
regarding the definition of Euler angles.
|
| 529 |
+
|
| 530 |
+
Attributes:
|
| 531 |
+
tensor (torch.Tensor): Float matrix of N x box_dim.
|
| 532 |
+
box_dim (int): Integer indicates the dimension of a box
|
| 533 |
+
Each row is (x, y, z, x_size, y_size, z_size, alpha, beta, gamma).
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
def __init__(self, tensor, box_dim=9, origin=(0.5, 0.5, 0.5)):
|
| 537 |
+
if isinstance(tensor, torch.Tensor):
|
| 538 |
+
device = tensor.device
|
| 539 |
+
else:
|
| 540 |
+
device = torch.device('cpu')
|
| 541 |
+
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
|
| 542 |
+
if tensor.numel() == 0:
|
| 543 |
+
# Use reshape, so we don't end up creating a new tensor that
|
| 544 |
+
# does not depend on the inputs (and consequently confuses jit)
|
| 545 |
+
tensor = tensor.reshape((0, box_dim)).to(dtype=torch.float32,
|
| 546 |
+
device=device)
|
| 547 |
+
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size()
|
| 548 |
+
|
| 549 |
+
if tensor.shape[-1] == 6:
|
| 550 |
+
# If the dimension of boxes is 6, we expand box_dim by padding
|
| 551 |
+
# (0, 0, 0) as a fake euler angle.
|
| 552 |
+
assert box_dim == 6
|
| 553 |
+
fake_rot = tensor.new_zeros(tensor.shape[0], 3)
|
| 554 |
+
tensor = torch.cat((tensor, fake_rot), dim=-1)
|
| 555 |
+
self.box_dim = box_dim + 3
|
| 556 |
+
elif tensor.shape[-1] == 7:
|
| 557 |
+
assert box_dim == 7
|
| 558 |
+
fake_euler = tensor.new_zeros(tensor.shape[0], 2)
|
| 559 |
+
tensor = torch.cat((tensor, fake_euler), dim=-1)
|
| 560 |
+
self.box_dim = box_dim + 2
|
| 561 |
+
else:
|
| 562 |
+
assert tensor.shape[-1] == 9
|
| 563 |
+
self.box_dim = box_dim
|
| 564 |
+
self.tensor = tensor.clone()
|
| 565 |
+
|
| 566 |
+
self.origin = origin
|
| 567 |
+
if origin != (0.5, 0.5, 0.5):
|
| 568 |
+
dst = self.tensor.new_tensor((0.5, 0.5, 0.5))
|
| 569 |
+
src = self.tensor.new_tensor(origin)
|
| 570 |
+
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
|
| 571 |
+
|
| 572 |
+
def get_corners(self, tensor1):
|
| 573 |
+
"""torch.Tensor: Coordinates of corners of all the boxes
|
| 574 |
+
in shape (N, 8, 3).
|
| 575 |
+
|
| 576 |
+
Convert the boxes to corners in clockwise order, in form of
|
| 577 |
+
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
|
| 578 |
+
|
| 579 |
+
.. code-block:: none
|
| 580 |
+
|
| 581 |
+
up z
|
| 582 |
+
front y ^
|
| 583 |
+
/ |
|
| 584 |
+
/ |
|
| 585 |
+
(x0, y1, z1) + ----------- + (x1, y1, z1)
|
| 586 |
+
/| / |
|
| 587 |
+
/ | / |
|
| 588 |
+
(x0, y0, z1) + ----------- + + (x1, y1, z0)
|
| 589 |
+
| / . | /
|
| 590 |
+
| / origin | /
|
| 591 |
+
(x0, y0, z0) + ----------- + --------> right x
|
| 592 |
+
(x1, y0, z0)
|
| 593 |
+
"""
|
| 594 |
+
if tensor1.numel() == 0:
|
| 595 |
+
return torch.empty([0, 8, 3], device=tensor1.device)
|
| 596 |
+
|
| 597 |
+
dims = tensor1[:, 3:6]
|
| 598 |
+
corners_norm = torch.from_numpy(
|
| 599 |
+
np.stack(np.unravel_index(np.arange(8), [2] * 3),
|
| 600 |
+
axis=1)).to(device=dims.device, dtype=dims.dtype)
|
| 601 |
+
|
| 602 |
+
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
|
| 603 |
+
# use relative origin
|
| 604 |
+
assert self.origin == (0.5, 0.5, 0.5), \
|
| 605 |
+
'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
|
| 606 |
+
corners_norm = corners_norm - dims.new_tensor(self.origin)
|
| 607 |
+
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
|
| 608 |
+
|
| 609 |
+
# rotate
|
| 610 |
+
corners = rotation_3d_in_euler(corners, tensor1[:, 6:])
|
| 611 |
+
|
| 612 |
+
corners += tensor1[:, :3].view(-1, 1, 3)
|
| 613 |
+
return corners
|
| 614 |
+
|
| 615 |
+
@classmethod
|
| 616 |
+
def overlaps(cls, boxes1, boxes2, mode='iou', eps=1e-4):
|
| 617 |
+
"""Calculate 3D overlaps of two boxes.
|
| 618 |
+
|
| 619 |
+
Note:
|
| 620 |
+
This function calculates the overlaps between ``boxes1`` and
|
| 621 |
+
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
|
| 622 |
+
|
| 623 |
+
Args:
|
| 624 |
+
boxes1 (:obj:`EulerInstance3DBoxes`): Boxes 1 contain N boxes.
|
| 625 |
+
boxes2 (:obj:`EulerInstance3DBoxes`): Boxes 2 contain M boxes.
|
| 626 |
+
mode (str): Mode of iou calculation. Defaults to 'iou'.
|
| 627 |
+
eps (bool): Epsilon. Defaults to 1e-4.
|
| 628 |
+
|
| 629 |
+
Returns:
|
| 630 |
+
torch.Tensor: Calculated 3D overlaps of the boxes.
|
| 631 |
+
"""
|
| 632 |
+
assert isinstance(boxes1, EulerInstance3DBoxes)
|
| 633 |
+
assert isinstance(boxes2, EulerInstance3DBoxes)
|
| 634 |
+
assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
|
| 635 |
+
f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'
|
| 636 |
+
|
| 637 |
+
assert mode in ['iou']
|
| 638 |
+
|
| 639 |
+
rows = len(boxes1)
|
| 640 |
+
cols = len(boxes2)
|
| 641 |
+
if rows * cols == 0:
|
| 642 |
+
return boxes1.tensor.new(rows, cols)
|
| 643 |
+
|
| 644 |
+
corners1 = boxes1.corners
|
| 645 |
+
corners2 = boxes2.corners
|
| 646 |
+
_, iou3d = box3d_overlap(corners1, corners2, eps=eps)
|
| 647 |
+
return iou3d
|
| 648 |
+
|
| 649 |
+
@property
|
| 650 |
+
def gravity_center(self):
|
| 651 |
+
"""torch.Tensor: A tensor with center of each box in shape (N, 3)."""
|
| 652 |
+
return self.tensor[:, :3]
|
| 653 |
+
|
| 654 |
+
@property
|
| 655 |
+
def corners(self):
|
| 656 |
+
"""torch.Tensor: Coordinates of corners of all the boxes
|
| 657 |
+
in shape (N, 8, 3).
|
| 658 |
+
|
| 659 |
+
Convert the boxes to corners in clockwise order, in form of
|
| 660 |
+
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
|
| 661 |
+
|
| 662 |
+
.. code-block:: none
|
| 663 |
+
|
| 664 |
+
up z
|
| 665 |
+
front y ^
|
| 666 |
+
/ |
|
| 667 |
+
/ |
|
| 668 |
+
(x0, y1, z1) + ----------- + (x1, y1, z1)
|
| 669 |
+
/| / |
|
| 670 |
+
/ | / |
|
| 671 |
+
(x0, y0, z1) + ----------- + + (x1, y1, z0)
|
| 672 |
+
| / . | /
|
| 673 |
+
| / origin | /
|
| 674 |
+
(x0, y0, z0) + ----------- + --------> right x
|
| 675 |
+
(x1, y0, z0)
|
| 676 |
+
"""
|
| 677 |
+
if self.tensor.numel() == 0:
|
| 678 |
+
return torch.empty([0, 8, 3], device=self.tensor.device)
|
| 679 |
+
|
| 680 |
+
dims = self.dims
|
| 681 |
+
corners_norm = torch.from_numpy(
|
| 682 |
+
np.stack(np.unravel_index(np.arange(8), [2] * 3),
|
| 683 |
+
axis=1)).to(device=dims.device, dtype=dims.dtype)
|
| 684 |
+
|
| 685 |
+
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
|
| 686 |
+
# use relative origin
|
| 687 |
+
assert self.origin == (0.5, 0.5, 0.5), \
|
| 688 |
+
'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
|
| 689 |
+
corners_norm = corners_norm - dims.new_tensor(self.origin)
|
| 690 |
+
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
|
| 691 |
+
|
| 692 |
+
# rotate
|
| 693 |
+
corners = rotation_3d_in_euler(corners, self.tensor[:, 6:])
|
| 694 |
+
|
| 695 |
+
corners += self.tensor[:, :3].view(-1, 1, 3)
|
| 696 |
+
return corners
|
| 697 |
+
|
| 698 |
+
def transform(self, matrix):
|
| 699 |
+
if self.tensor.shape[0] == 0:
|
| 700 |
+
return
|
| 701 |
+
if not isinstance(matrix, torch.Tensor):
|
| 702 |
+
matrix = self.tensor.new_tensor(matrix)
|
| 703 |
+
points = self.tensor[:, :3]
|
| 704 |
+
constant = points.new_ones(points.shape[0], 1)
|
| 705 |
+
points_extend = torch.concat([points, constant], dim=-1)
|
| 706 |
+
points_trans = torch.matmul(points_extend, matrix.transpose(-2,
|
| 707 |
+
-1))[:, :3]
|
| 708 |
+
|
| 709 |
+
size = self.tensor[:, 3:6]
|
| 710 |
+
|
| 711 |
+
# angle_delta = matrix_to_euler_angles(matrix[:3,:3], 'ZXY')
|
| 712 |
+
# angle = self.tensor[:,6:] + angle_delta
|
| 713 |
+
ori_matrix = euler_angles_to_matrix(self.tensor[:, 6:], 'ZXY')
|
| 714 |
+
rot_matrix = matrix[:3, :3].expand_as(ori_matrix)
|
| 715 |
+
final = torch.bmm(rot_matrix, ori_matrix)
|
| 716 |
+
angle = matrix_to_euler_angles(final, 'ZXY')
|
| 717 |
+
|
| 718 |
+
self.tensor = torch.cat([points_trans, size, angle], dim=-1)
|
| 719 |
+
|
| 720 |
+
def scale(self, scale_factor: float) -> None:
|
| 721 |
+
"""Scale the box with horizontal and vertical scaling factors.
|
| 722 |
+
|
| 723 |
+
Args:
|
| 724 |
+
scale_factors (float): Scale factors to scale the boxes.
|
| 725 |
+
"""
|
| 726 |
+
self.tensor[:, :6] *= scale_factor
|
| 727 |
+
|
| 728 |
+
def rotate(self, angle, points=None):
|
| 729 |
+
"""Rotate boxes with points (optional) with the given angle or rotation
|
| 730 |
+
matrix.
|
| 731 |
+
|
| 732 |
+
Args:
|
| 733 |
+
angle (float | torch.Tensor | np.ndarray):
|
| 734 |
+
Rotation angle or rotation matrix.
|
| 735 |
+
points (torch.Tensor | np.ndarray | :obj:``, optional):
|
| 736 |
+
Points to rotate. Defaults to None.
|
| 737 |
+
|
| 738 |
+
Returns:
|
| 739 |
+
tuple or None: When ``points`` is None, the function returns
|
| 740 |
+
None, otherwise it returns the rotated points and the
|
| 741 |
+
rotation matrix ``rot_mat_T``.
|
| 742 |
+
"""
|
| 743 |
+
if not isinstance(angle, torch.Tensor):
|
| 744 |
+
angle = self.tensor.new_tensor(angle)
|
| 745 |
+
|
| 746 |
+
if angle.numel() == 1: # only given yaw angle for rotation
|
| 747 |
+
angle = self.tensor.new_tensor([angle, 0., 0.])
|
| 748 |
+
rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
|
| 749 |
+
elif angle.numel() == 3:
|
| 750 |
+
rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
|
| 751 |
+
elif angle.shape == torch.Size([3, 3]):
|
| 752 |
+
rot_matrix = angle
|
| 753 |
+
else:
|
| 754 |
+
raise NotImplementedError
|
| 755 |
+
|
| 756 |
+
rot_mat_T = rot_matrix.T
|
| 757 |
+
transform_matrix = torch.eye(4)
|
| 758 |
+
transform_matrix[:3, :3] = rot_matrix
|
| 759 |
+
self.transform(transform_matrix)
|
| 760 |
+
|
| 761 |
+
if points is not None:
|
| 762 |
+
if isinstance(points, torch.Tensor):
|
| 763 |
+
points[:, :3] = points[:, :3] @ rot_mat_T
|
| 764 |
+
elif isinstance(points, np.ndarray):
|
| 765 |
+
rot_mat_T = rot_mat_T.cpu().numpy()
|
| 766 |
+
points[:, :3] = np.dot(points[:, :3], rot_mat_T)
|
| 767 |
+
elif isinstance(points, ):
|
| 768 |
+
points.rotate(rot_mat_T)
|
| 769 |
+
else:
|
| 770 |
+
raise ValueError
|
| 771 |
+
return points, rot_mat_T
|
| 772 |
+
else:
|
| 773 |
+
return rot_mat_T
|
| 774 |
+
|
| 775 |
+
def flip(self, direction='X'):
|
| 776 |
+
"""Flip the boxes along the corresponding axis.
|
| 777 |
+
|
| 778 |
+
Args:
|
| 779 |
+
direction (str, optional): Flip axis. Defaults to 'X'.
|
| 780 |
+
"""
|
| 781 |
+
assert direction in ['X', 'Y', 'Z']
|
| 782 |
+
if direction == 'X':
|
| 783 |
+
self.tensor[:, 0] = -self.tensor[:, 0]
|
| 784 |
+
self.tensor[:, 6] = -self.tensor[:, 6] + np.pi
|
| 785 |
+
self.tensor[:, 8] = -self.tensor[:, 8]
|
| 786 |
+
elif direction == 'Y':
|
| 787 |
+
self.tensor[:, 1] = -self.tensor[:, 1]
|
| 788 |
+
self.tensor[:, 6] = -self.tensor[:, 6]
|
| 789 |
+
self.tensor[:, 7] = -self.tensor[:, 7] + np.pi
|
| 790 |
+
elif direction == 'Z':
|
| 791 |
+
self.tensor[:, 2] = -self.tensor[:, 2]
|
| 792 |
+
self.tensor[:, 7] = -self.tensor[:, 7]
|
| 793 |
+
self.tensor[:, 8] = -self.tensor[:, 8] + np.pi
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
def rotation_3d_in_euler(points, angles, return_mat=False, clockwise=False):
|
| 797 |
+
"""Rotate points by angles according to axis.
|
| 798 |
+
|
| 799 |
+
Args:
|
| 800 |
+
points (np.ndarray | torch.Tensor | list | tuple ):
|
| 801 |
+
Points of shape (N, M, 3).
|
| 802 |
+
angles (np.ndarray | torch.Tensor | list | tuple):
|
| 803 |
+
Vector of angles in shape (N, 3)
|
| 804 |
+
return_mat: Whether or not return the rotation matrix (transposed).
|
| 805 |
+
Defaults to False.
|
| 806 |
+
clockwise: Whether the rotation is clockwise. Defaults to False.
|
| 807 |
+
|
| 808 |
+
Raises:
|
| 809 |
+
ValueError: when the axis is not in range [0, 1, 2], it will
|
| 810 |
+
raise value error.
|
| 811 |
+
|
| 812 |
+
Returns:
|
| 813 |
+
(torch.Tensor | np.ndarray): Rotated points in shape (N, M, 3).
|
| 814 |
+
"""
|
| 815 |
+
batch_free = len(points.shape) == 2
|
| 816 |
+
if batch_free:
|
| 817 |
+
points = points[None]
|
| 818 |
+
|
| 819 |
+
if len(angles.shape) == 1:
|
| 820 |
+
angles = angles.expand(points.shape[:1] + (3, ))
|
| 821 |
+
# angles = torch.full(points.shape[:1], angles)
|
| 822 |
+
|
| 823 |
+
assert len(points.shape) == 3 and len(angles.shape) == 2 \
|
| 824 |
+
and points.shape[0] == angles.shape[0], f'Incorrect shape of points ' \
|
| 825 |
+
f'angles: {points.shape}, {angles.shape}'
|
| 826 |
+
|
| 827 |
+
assert points.shape[-1] in [2, 3], \
|
| 828 |
+
f'Points size should be 2 or 3 instead of {points.shape[-1]}'
|
| 829 |
+
|
| 830 |
+
rot_mat_T = euler_angles_to_matrix(angles, 'ZXY') # N, 3,3
|
| 831 |
+
|
| 832 |
+
rot_mat_T = rot_mat_T.transpose(-2, -1)
|
| 833 |
+
|
| 834 |
+
if clockwise:
|
| 835 |
+
raise NotImplementedError('clockwise')
|
| 836 |
+
|
| 837 |
+
if points.shape[0] == 0:
|
| 838 |
+
points_new = points
|
| 839 |
+
else:
|
| 840 |
+
points_new = torch.bmm(points, rot_mat_T)
|
| 841 |
+
|
| 842 |
+
if batch_free:
|
| 843 |
+
points_new = points_new.squeeze(0)
|
| 844 |
+
|
| 845 |
+
if return_mat:
|
| 846 |
+
if batch_free:
|
| 847 |
+
rot_mat_T = rot_mat_T.squeeze(0)
|
| 848 |
+
return points_new, rot_mat_T
|
| 849 |
+
else:
|
| 850 |
+
return points_new
|
| 851 |
+
|
| 852 |
+
|
| 853 |
+
def _axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray:
|
| 854 |
+
"""Return the rotation matrices for one of the rotations about an axis of
|
| 855 |
+
which Euler angles describe, for each value of the angle given.
|
| 856 |
+
|
| 857 |
+
Args:
|
| 858 |
+
axis: Axis label "X" or "Y or "Z".
|
| 859 |
+
angle: any shape tensor of Euler angles in radians
|
| 860 |
+
|
| 861 |
+
Returns:
|
| 862 |
+
Rotation matrices as tensor of shape (..., 3, 3).
|
| 863 |
+
"""
|
| 864 |
+
|
| 865 |
+
cos = np.cos(angle)
|
| 866 |
+
sin = np.sin(angle)
|
| 867 |
+
one = np.ones_like(angle)
|
| 868 |
+
zero = np.zeros_like(angle)
|
| 869 |
+
|
| 870 |
+
if axis == 'X':
|
| 871 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
| 872 |
+
elif axis == 'Y':
|
| 873 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
| 874 |
+
elif axis == 'Z':
|
| 875 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
| 876 |
+
else:
|
| 877 |
+
raise ValueError('letter must be either X, Y or Z.')
|
| 878 |
+
|
| 879 |
+
return np.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
| 880 |
+
|
| 881 |
+
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
|
| 885 |
+
def is_inside_box(points, center, size, rotation_mat):
|
| 886 |
+
"""Check if points are inside a 3D bounding box.
|
| 887 |
+
|
| 888 |
+
Args:
|
| 889 |
+
points: 3D points, numpy array of shape (n, 3).
|
| 890 |
+
center: center of the box, numpy array of shape (3, ).
|
| 891 |
+
size: size of the box, numpy array of shape (3, ).
|
| 892 |
+
rotation_mat: rotation matrix of the box,
|
| 893 |
+
numpy array of shape (3, 3).
|
| 894 |
+
|
| 895 |
+
Returns:
|
| 896 |
+
Boolean array of shape (n, )
|
| 897 |
+
indicating if each point is inside the box.
|
| 898 |
+
"""
|
| 899 |
+
assert points.shape[1] == 3, 'points should be of shape (n, 3)'
|
| 900 |
+
points = np.array(points) # n,3
|
| 901 |
+
center = np.array(center) # n, 3
|
| 902 |
+
size = np.array(size) # n, 3
|
| 903 |
+
rotation_mat = np.array(rotation_mat)
|
| 904 |
+
assert rotation_mat.shape == (
|
| 905 |
+
3,
|
| 906 |
+
3,
|
| 907 |
+
), f'R should be shape (3,3), but got {rotation_mat.shape}'
|
| 908 |
+
pcd_local = (points - center) @ rotation_mat # n, 3
|
| 909 |
+
pcd_local = pcd_local / size * 2.0 # scale to [-1, 1] # n, 3
|
| 910 |
+
pcd_local = abs(pcd_local)
|
| 911 |
+
return ((pcd_local[:, 0] <= 1)
|
| 912 |
+
& (pcd_local[:, 1] <= 1)
|
| 913 |
+
& (pcd_local[:, 2] <= 1))
|
| 914 |
+
|
| 915 |
+
|
| 916 |
+
def normalize_box(scene_pcd, embodied_scan_bbox):
|
| 917 |
+
"""Find the smallest 6 DoF box that covers these points which 9 DoF box
|
| 918 |
+
covers.
|
| 919 |
+
|
| 920 |
+
Args:
|
| 921 |
+
scene_pcd (Tensor / ndarray):
|
| 922 |
+
(..., 3)
|
| 923 |
+
embodied_scan_bbox (Tensor / ndarray):
|
| 924 |
+
(9,) 9 DoF box
|
| 925 |
+
|
| 926 |
+
Returns:
|
| 927 |
+
Tensor: Transformed 3D box of shape (N, 8, 3).
|
| 928 |
+
"""
|
| 929 |
+
|
| 930 |
+
bbox = np.array(embodied_scan_bbox)
|
| 931 |
+
orientation = euler_to_matrix_np(bbox[np.newaxis, 6:])[0]
|
| 932 |
+
position = np.array(bbox[:3])
|
| 933 |
+
size = np.array(bbox[3:6])
|
| 934 |
+
obj_mask = np.array(
|
| 935 |
+
is_inside_box(scene_pcd[:, :3], position, size, orientation),
|
| 936 |
+
dtype=bool,
|
| 937 |
+
)
|
| 938 |
+
obj_pc = scene_pcd[obj_mask]
|
| 939 |
+
|
| 940 |
+
# resume the same if there's None
|
| 941 |
+
if obj_pc.shape[0] < 1:
|
| 942 |
+
return embodied_scan_bbox[:6]
|
| 943 |
+
xmin = np.min(obj_pc[:, 0])
|
| 944 |
+
ymin = np.min(obj_pc[:, 1])
|
| 945 |
+
zmin = np.min(obj_pc[:, 2])
|
| 946 |
+
xmax = np.max(obj_pc[:, 0])
|
| 947 |
+
ymax = np.max(obj_pc[:, 1])
|
| 948 |
+
zmax = np.max(obj_pc[:, 2])
|
| 949 |
+
bbox = np.array([
|
| 950 |
+
(xmin + xmax) / 2,
|
| 951 |
+
(ymin + ymax) / 2,
|
| 952 |
+
(zmin + zmax) / 2,
|
| 953 |
+
xmax - xmin,
|
| 954 |
+
ymax - ymin,
|
| 955 |
+
zmax - zmin,
|
| 956 |
+
])
|
| 957 |
+
return bbox
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
def from_9dof_to_6dof(pcd_data, bbox_):
|
| 961 |
+
# that's a kind of loss of information, so we don't recommend
|
| 962 |
+
return normalize_box(pcd_data, bbox_)
|
| 963 |
+
|
| 964 |
+
|
| 965 |
+
def bbox_to_corners(centers, sizes, rot_mat: torch.Tensor) -> torch.Tensor:
|
| 966 |
+
"""Transform bbox parameters to the 8 corners.
|
| 967 |
+
|
| 968 |
+
Args:
|
| 969 |
+
bbox (Tensor): 3D box of shape (N, 6) or (N, 7) or (N, 9).
|
| 970 |
+
|
| 971 |
+
Returns:
|
| 972 |
+
Tensor: Transformed 3D box of shape (N, 8, 3).
|
| 973 |
+
"""
|
| 974 |
+
device = centers.device
|
| 975 |
+
use_batch = False
|
| 976 |
+
if len(centers.shape) == 3:
|
| 977 |
+
use_batch = True
|
| 978 |
+
batch_size, n_proposals = centers.shape[0], centers.shape[1]
|
| 979 |
+
centers = centers.reshape(-1, 3)
|
| 980 |
+
sizes = sizes.reshape(-1, 3)
|
| 981 |
+
rot_mat = rot_mat.reshape(-1, 3, 3)
|
| 982 |
+
|
| 983 |
+
n_box = centers.shape[0]
|
| 984 |
+
if use_batch:
|
| 985 |
+
assert n_box == batch_size * n_proposals
|
| 986 |
+
centers = centers.unsqueeze(1).repeat(1, 8, 1) # shape (N, 8, 3)
|
| 987 |
+
half_sizes = sizes.unsqueeze(1).repeat(1, 8, 1) / 2 # shape (N, 8, 3)
|
| 988 |
+
eight_corners_x = (torch.tensor([1, 1, 1, 1, -1, -1, -1, -1],
|
| 989 |
+
device=device).unsqueeze(0).repeat(
|
| 990 |
+
n_box, 1)) # shape (N, 8)
|
| 991 |
+
eight_corners_y = (torch.tensor([1, 1, -1, -1, 1, 1, -1, -1],
|
| 992 |
+
device=device).unsqueeze(0).repeat(
|
| 993 |
+
n_box, 1)) # shape (N, 8)
|
| 994 |
+
eight_corners_z = (torch.tensor([1, -1, -1, 1, 1, -1, -1, 1],
|
| 995 |
+
device=device).unsqueeze(0).repeat(
|
| 996 |
+
n_box, 1)) # shape (N, 8)
|
| 997 |
+
eight_corners = torch.stack(
|
| 998 |
+
(eight_corners_x, eight_corners_y, eight_corners_z),
|
| 999 |
+
dim=-1) # shape (N, 8, 3)
|
| 1000 |
+
eight_corners = eight_corners * half_sizes # shape (N, 8, 3)
|
| 1001 |
+
# rot_mat: (N, 3, 3), eight_corners: (N, 8, 3)
|
| 1002 |
+
rotated_corners = torch.matmul(eight_corners,
|
| 1003 |
+
rot_mat.transpose(1, 2)) # shape (N, 8, 3)
|
| 1004 |
+
res = centers + rotated_corners
|
| 1005 |
+
if use_batch:
|
| 1006 |
+
res = res.reshape(batch_size, n_proposals, 8, 3)
|
| 1007 |
+
return res
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
def euler_iou3d_corners(boxes1, boxes2):
|
| 1011 |
+
rows = boxes1.shape[0]
|
| 1012 |
+
cols = boxes2.shape[0]
|
| 1013 |
+
if rows * cols == 0:
|
| 1014 |
+
return boxes1.new(rows, cols)
|
| 1015 |
+
|
| 1016 |
+
_, iou3d = box3d_overlap(boxes1, boxes2)
|
| 1017 |
+
return iou3d
|
| 1018 |
+
|
| 1019 |
+
|
| 1020 |
+
def euler_iou3d_bbox(center1, size1, rot1, center2, size2, rot2):
|
| 1021 |
+
"""Calculate the 3D IoU between two grounps of 9DOF bounding boxes.
|
| 1022 |
+
|
| 1023 |
+
Args:
|
| 1024 |
+
center1 (Tensor): (n, cx, cy, cz) of grounp1.
|
| 1025 |
+
size1 (Tensor): (n, l, w, h) of grounp1.
|
| 1026 |
+
rot1 (Tensor): rot matrix of grounp1.
|
| 1027 |
+
center1 (Tensor): (m, cx, cy, cz) of grounp2.
|
| 1028 |
+
size1 (Tensor): (m, l, w, h) of grounp2.
|
| 1029 |
+
rot1 (Tensor): rot matrix of grounp2.
|
| 1030 |
+
|
| 1031 |
+
Returns:
|
| 1032 |
+
numpy.ndarray: (n, m) the 3D IoU.
|
| 1033 |
+
"""
|
| 1034 |
+
if torch.cuda.is_available():
|
| 1035 |
+
center1 = center1.cuda()
|
| 1036 |
+
size1 = size1.cuda()
|
| 1037 |
+
rot1 = rot1.cuda()
|
| 1038 |
+
center2 = center2.cuda()
|
| 1039 |
+
size2 = size2.cuda()
|
| 1040 |
+
rot2 = rot2.cuda()
|
| 1041 |
+
corners1 = bbox_to_corners(center1, size1, rot1)
|
| 1042 |
+
corners2 = bbox_to_corners(center2, size2, rot2)
|
| 1043 |
+
result = euler_iou3d_corners(corners1, corners2)
|
| 1044 |
+
|
| 1045 |
+
if torch.cuda.is_available():
|
| 1046 |
+
result = result.detach().cpu()
|
| 1047 |
+
return result.numpy()
|
| 1048 |
+
|
| 1049 |
+
|
| 1050 |
+
def index_box(boxes: List[torch.tensor],
|
| 1051 |
+
indices: Union[List[torch.tensor], torch.tensor])\
|
| 1052 |
+
-> Union[List[torch.tensor], torch.tensor]:
|
| 1053 |
+
"""Convert a grounp of bounding boxes represented in [center, size, rot]
|
| 1054 |
+
format to 9 DoF format.
|
| 1055 |
+
|
| 1056 |
+
Args:
|
| 1057 |
+
box (list/tuple, tensor): boxes in a grounp.
|
| 1058 |
+
|
| 1059 |
+
Returns:
|
| 1060 |
+
Tensor : 9 DoF format. (num,9)
|
| 1061 |
+
"""
|
| 1062 |
+
if isinstance(boxes, (list, tuple)):
|
| 1063 |
+
return [index_box(box, indices) for box in boxes]
|
| 1064 |
+
else:
|
| 1065 |
+
return boxes[indices]
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
def to_9dof_box(box: List[torch.tensor]):
|
| 1069 |
+
"""Convert a grounp of bounding boxes represented in [center, size, rot]
|
| 1070 |
+
format to 9 DoF format.
|
| 1071 |
+
|
| 1072 |
+
Args:
|
| 1073 |
+
box (list/tuple, tensor): boxes in a grounp.
|
| 1074 |
+
|
| 1075 |
+
Returns:
|
| 1076 |
+
Tensor : 9 DoF format. (num,9)
|
| 1077 |
+
"""
|
| 1078 |
+
|
| 1079 |
+
return EulerInstance3DBoxes(box, origin=(0.5, 0.5, 0.5))
|
test_annotations_mmscan.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vg_evaluator.py
ADDED
|
@@ -0,0 +1,361 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Tuple
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
|
| 7 |
+
from mmscan_utils.box_metric import (get_average_precision,
|
| 8 |
+
get_general_topk_scores,
|
| 9 |
+
subset_get_average_precision)
|
| 10 |
+
from mmscan_utils.box_utils import index_box, to_9dof_box
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class VisualGroundingEvaluator:
|
| 14 |
+
"""Evaluator for MMScan Visual Grounding benchmark. The evaluation metric
|
| 15 |
+
includes "AP","AP_C","AR","gTop-k".
|
| 16 |
+
|
| 17 |
+
Attributes:
|
| 18 |
+
save_buffer(list[dict]): Save the buffer of Inputs.
|
| 19 |
+
|
| 20 |
+
records(list[dict]): Metric results for each sample
|
| 21 |
+
|
| 22 |
+
category_records(dict): Metric results for each category
|
| 23 |
+
(average of all samples with the same category)
|
| 24 |
+
Args:
|
| 25 |
+
show_results(bool): Whether to print the evaluation results.
|
| 26 |
+
Defaults to True.
|
| 27 |
+
"""
|
| 28 |
+
|
| 29 |
+
def __init__(self, show_results: bool = True) -> None:
|
| 30 |
+
|
| 31 |
+
self.show_results = show_results
|
| 32 |
+
self.eval_metric_type = ['AP', 'AR']
|
| 33 |
+
self.top_k_visible = [1, 3, 5]
|
| 34 |
+
self.call_for_category_mode = True
|
| 35 |
+
|
| 36 |
+
for top_k in [1, 3, 5, 10]:
|
| 37 |
+
self.eval_metric_type.append(f'gTop-{top_k}')
|
| 38 |
+
|
| 39 |
+
self.iou_thresholds = [0.25, 0.50]
|
| 40 |
+
self.eval_metric = []
|
| 41 |
+
for iou_thr in self.iou_thresholds:
|
| 42 |
+
for eval_type in self.eval_metric_type:
|
| 43 |
+
self.eval_metric.append(eval_type + '@' + str(iou_thr))
|
| 44 |
+
|
| 45 |
+
self.reset()
|
| 46 |
+
|
| 47 |
+
def reset(self) -> None:
|
| 48 |
+
"""Reset the evaluator, clear the buffer and records."""
|
| 49 |
+
self.save_buffer = []
|
| 50 |
+
self.records = []
|
| 51 |
+
self.category_records = {}
|
| 52 |
+
|
| 53 |
+
def update(self, raw_batch_input: List[dict]) -> None:
|
| 54 |
+
"""Update a batch of results to the buffer.
|
| 55 |
+
|
| 56 |
+
Args:
|
| 57 |
+
raw_batch_input (list[dict]):
|
| 58 |
+
Batch of the raw original input.
|
| 59 |
+
"""
|
| 60 |
+
self.__check_format__(raw_batch_input)
|
| 61 |
+
self.save_buffer.extend(raw_batch_input)
|
| 62 |
+
|
| 63 |
+
def start_evaluation(self) -> dict:
|
| 64 |
+
"""This function is used to start the evaluation process.
|
| 65 |
+
|
| 66 |
+
It will iterate over the saved buffer and evaluate each item.
|
| 67 |
+
Returns:
|
| 68 |
+
category_records(dict): Metric results per category.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
category_collect = {}
|
| 72 |
+
|
| 73 |
+
for data_item in tqdm(self.save_buffer):
|
| 74 |
+
|
| 75 |
+
metric_for_single = {}
|
| 76 |
+
|
| 77 |
+
# (1) len(gt)==0 : skip
|
| 78 |
+
if self.__is_zero__(data_item['gt_bboxes']):
|
| 79 |
+
continue
|
| 80 |
+
|
| 81 |
+
# (2) len(pred)==0 : model's wrong
|
| 82 |
+
if self.__is_zero__(data_item['pred_bboxes']):
|
| 83 |
+
for iou_thr in self.iou_thresholds:
|
| 84 |
+
metric_for_single[f'AP@{iou_thr}'] = 0
|
| 85 |
+
metric_for_single[f'AR@{iou_thr}'] = 0
|
| 86 |
+
for topk in [1, 3, 5, 10]:
|
| 87 |
+
metric_for_single[f'gTop-{topk}@{iou_thr}'] = 0
|
| 88 |
+
|
| 89 |
+
data_item['num_gts'] = len(data_item['gt_bboxes'])
|
| 90 |
+
data_item.update(metric_for_single)
|
| 91 |
+
self.records.append(data_item)
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
iou_array, pred_score = self.__calculate_iou_array_(data_item)
|
| 95 |
+
if self.call_for_category_mode:
|
| 96 |
+
category = self.__category_mapping__(data_item['subclass'])
|
| 97 |
+
if category not in category_collect.keys():
|
| 98 |
+
category_collect[category] = {
|
| 99 |
+
'ious': [],
|
| 100 |
+
'scores': [],
|
| 101 |
+
'sample_indices': [],
|
| 102 |
+
'cnt': 0,
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
category_collect[category]['ious'].extend(iou_array)
|
| 106 |
+
category_collect[category]['scores'].extend(pred_score)
|
| 107 |
+
category_collect[category]['sample_indices'].extend(
|
| 108 |
+
[data_item['index']] * len(iou_array))
|
| 109 |
+
category_collect[category]['cnt'] += 1
|
| 110 |
+
|
| 111 |
+
for iou_thr in self.iou_thresholds:
|
| 112 |
+
# AP/AR metric
|
| 113 |
+
AP, AR = get_average_precision(iou_array, iou_thr)
|
| 114 |
+
metric_for_single[f'AP@{iou_thr}'] = AP
|
| 115 |
+
metric_for_single[f'AR@{iou_thr}'] = AR
|
| 116 |
+
|
| 117 |
+
# topk metric
|
| 118 |
+
metric_for_single.update(
|
| 119 |
+
get_general_topk_scores(iou_array, iou_thr))
|
| 120 |
+
|
| 121 |
+
data_item['num_gts'] = iou_array.shape[1]
|
| 122 |
+
data_item.update(metric_for_single)
|
| 123 |
+
self.records.append(data_item)
|
| 124 |
+
|
| 125 |
+
self.collect_result()
|
| 126 |
+
|
| 127 |
+
if self.call_for_category_mode:
|
| 128 |
+
for iou_thr in self.iou_thresholds:
|
| 129 |
+
self.category_records['overall'][f'AP_C@{iou_thr}'] = 0
|
| 130 |
+
self.category_records['overall'][f'AR_C@{iou_thr}'] = 0
|
| 131 |
+
|
| 132 |
+
for category in category_collect:
|
| 133 |
+
AP_C, AR_C = subset_get_average_precision(
|
| 134 |
+
category_collect[category], iou_thr)
|
| 135 |
+
self.category_records[category][f'AP_C@{iou_thr}'] = AP_C
|
| 136 |
+
self.category_records[category][f'AR_C@{iou_thr}'] = AR_C
|
| 137 |
+
self.category_records['overall'][f'AP_C@{iou_thr}'] += (
|
| 138 |
+
AP_C * category_collect[category]['cnt'] /
|
| 139 |
+
len(self.records))
|
| 140 |
+
self.category_records['overall'][f'AR_C@{iou_thr}'] += (
|
| 141 |
+
AR_C * category_collect[category]['cnt'] /
|
| 142 |
+
len(self.records))
|
| 143 |
+
|
| 144 |
+
return self.category_records
|
| 145 |
+
|
| 146 |
+
def collect_result(self) -> dict:
|
| 147 |
+
"""Collect the result from the evaluation process.
|
| 148 |
+
|
| 149 |
+
Stores them based on their subclass.
|
| 150 |
+
Returns:
|
| 151 |
+
category_results(dict): Average results per category.
|
| 152 |
+
"""
|
| 153 |
+
category_results = {}
|
| 154 |
+
category_results['overall'] = {}
|
| 155 |
+
|
| 156 |
+
for metric_name in self.eval_metric:
|
| 157 |
+
category_results['overall'][metric_name] = []
|
| 158 |
+
category_results['overall']['num_gts'] = 0
|
| 159 |
+
|
| 160 |
+
for data_item in self.records:
|
| 161 |
+
category = self.__category_mapping__(data_item['subclass'])
|
| 162 |
+
|
| 163 |
+
if category not in category_results:
|
| 164 |
+
category_results[category] = {}
|
| 165 |
+
for metric_name in self.eval_metric:
|
| 166 |
+
category_results[category][metric_name] = []
|
| 167 |
+
category_results[category]['num_gts'] = 0
|
| 168 |
+
|
| 169 |
+
for metric_name in self.eval_metric:
|
| 170 |
+
for metric_name in self.eval_metric:
|
| 171 |
+
category_results[category][metric_name].append(
|
| 172 |
+
data_item[metric_name])
|
| 173 |
+
category_results['overall'][metric_name].append(
|
| 174 |
+
data_item[metric_name])
|
| 175 |
+
|
| 176 |
+
category_results['overall']['num_gts'] += data_item['num_gts']
|
| 177 |
+
category_results[category]['num_gts'] += data_item['num_gts']
|
| 178 |
+
for category in category_results:
|
| 179 |
+
for metric_name in self.eval_metric:
|
| 180 |
+
category_results[category][metric_name] = np.mean(
|
| 181 |
+
category_results[category][metric_name])
|
| 182 |
+
|
| 183 |
+
self.category_records = category_results
|
| 184 |
+
|
| 185 |
+
return category_results
|
| 186 |
+
|
| 187 |
+
def print_result(self) -> str:
|
| 188 |
+
"""Showing the result table.
|
| 189 |
+
|
| 190 |
+
Returns:
|
| 191 |
+
table(str): The metric result table.
|
| 192 |
+
"""
|
| 193 |
+
assert len(self.category_records) > 0, 'No result yet.'
|
| 194 |
+
self.category_records = {
|
| 195 |
+
key: self.category_records[key]
|
| 196 |
+
for key in sorted(self.category_records.keys(), reverse=True)
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
header = ['Type']
|
| 200 |
+
header.extend(self.category_records.keys())
|
| 201 |
+
table_columns = [[] for _ in range(len(header))]
|
| 202 |
+
|
| 203 |
+
# some metrics
|
| 204 |
+
for iou_thr in self.iou_thresholds:
|
| 205 |
+
show_in_table = (['AP', 'AR'] +
|
| 206 |
+
[f'gTop-{k}' for k in self.top_k_visible]
|
| 207 |
+
if not self.call_for_category_mode else
|
| 208 |
+
['AP', 'AR', 'AP_C', 'AR_C'] +
|
| 209 |
+
[f'gTop-{k}' for k in self.top_k_visible])
|
| 210 |
+
|
| 211 |
+
for metric_type in show_in_table:
|
| 212 |
+
table_columns[0].append(metric_type + ' ' + str(iou_thr))
|
| 213 |
+
|
| 214 |
+
for i, category in enumerate(self.category_records.keys()):
|
| 215 |
+
ap = self.category_records[category][f'AP@{iou_thr}']
|
| 216 |
+
ar = self.category_records[category][f'AR@{iou_thr}']
|
| 217 |
+
table_columns[i + 1].append(f'{float(ap):.4f}')
|
| 218 |
+
table_columns[i + 1].append(f'{float(ar):.4f}')
|
| 219 |
+
|
| 220 |
+
ap = self.category_records[category][f'AP_C@{iou_thr}']
|
| 221 |
+
ar = self.category_records[category][f'AR_C@{iou_thr}']
|
| 222 |
+
table_columns[i + 1].append(f'{float(ap):.4f}')
|
| 223 |
+
table_columns[i + 1].append(f'{float(ar):.4f}')
|
| 224 |
+
for k in self.top_k_visible:
|
| 225 |
+
top_k = self.category_records[category][
|
| 226 |
+
f'gTop-{k}@{iou_thr}']
|
| 227 |
+
table_columns[i + 1].append(f'{float(top_k):.4f}')
|
| 228 |
+
|
| 229 |
+
# Number of gts
|
| 230 |
+
table_columns[0].append('Num GT')
|
| 231 |
+
for i, category in enumerate(self.category_records.keys()):
|
| 232 |
+
table_columns[i + 1].append(
|
| 233 |
+
f'{int(self.category_records[category]["num_gts"])}')
|
| 234 |
+
|
| 235 |
+
table_data = [header]
|
| 236 |
+
table_rows = list(zip(*table_columns))
|
| 237 |
+
table_data += table_rows
|
| 238 |
+
table_data = [list(row) for row in zip(*table_data)]
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
return table_data
|
| 242 |
+
|
| 243 |
+
def __category_mapping__(self, sub_class: str) -> str:
|
| 244 |
+
"""Mapping the subclass name to the category name.
|
| 245 |
+
|
| 246 |
+
Args:
|
| 247 |
+
sub_class (str): The subclass name in the original samples.
|
| 248 |
+
|
| 249 |
+
Returns:
|
| 250 |
+
category (str): The category name.
|
| 251 |
+
"""
|
| 252 |
+
sub_class = sub_class.lower()
|
| 253 |
+
sub_class = sub_class.replace('single', 'sngl')
|
| 254 |
+
sub_class = sub_class.replace('inter', 'int')
|
| 255 |
+
sub_class = sub_class.replace('unique', 'uniq')
|
| 256 |
+
sub_class = sub_class.replace('common', 'cmn')
|
| 257 |
+
sub_class = sub_class.replace('attribute', 'attr')
|
| 258 |
+
if 'sngl' in sub_class and ('attr' in sub_class or 'eq' in sub_class):
|
| 259 |
+
sub_class = 'vg_sngl_attr'
|
| 260 |
+
return sub_class
|
| 261 |
+
|
| 262 |
+
def __calculate_iou_array_(
|
| 263 |
+
self, data_item: dict) -> Tuple[np.ndarray, np.ndarray]:
|
| 264 |
+
"""Calculate some information needed for eavl.
|
| 265 |
+
|
| 266 |
+
Args:
|
| 267 |
+
data_item (dict): The subclass name in the original samples.
|
| 268 |
+
|
| 269 |
+
Returns:
|
| 270 |
+
np.ndarray, np.ndarray :
|
| 271 |
+
The iou array sorted by the confidence and the
|
| 272 |
+
confidence scores.
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
pred_bboxes = data_item['pred_bboxes']
|
| 276 |
+
gt_bboxes = data_item['gt_bboxes']
|
| 277 |
+
# Sort the bounding boxes based on their scores
|
| 278 |
+
pred_scores = data_item['pred_scores']
|
| 279 |
+
top_idxs = torch.argsort(pred_scores, descending=True)
|
| 280 |
+
pred_scores = pred_scores[top_idxs]
|
| 281 |
+
|
| 282 |
+
pred_bboxes = to_9dof_box(index_box(pred_bboxes, top_idxs))
|
| 283 |
+
|
| 284 |
+
gt_bboxes = to_9dof_box(gt_bboxes)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
iou_matrix = pred_bboxes.overlaps(pred_bboxes,
|
| 288 |
+
gt_bboxes) # (num_query, num_gt)
|
| 289 |
+
# (3) calculate the TP and NP,
|
| 290 |
+
# preparing for the forward AP/topk calculation
|
| 291 |
+
pred_scores = pred_scores.cpu().numpy()
|
| 292 |
+
iou_array = iou_matrix.cpu().numpy()
|
| 293 |
+
|
| 294 |
+
return iou_array, pred_scores
|
| 295 |
+
|
| 296 |
+
def __is_zero__(self, box):
|
| 297 |
+
if isinstance(box, (list, tuple)):
|
| 298 |
+
return (len(box[0]) == 0)
|
| 299 |
+
return (len(box) == 0)
|
| 300 |
+
|
| 301 |
+
def __check_format__(self, raw_input: List[dict]) -> None:
|
| 302 |
+
"""Check if the input conform with mmscan evaluation format. Transform
|
| 303 |
+
the input box format.
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
raw_input (list[dict]): The input of VG evaluator.
|
| 307 |
+
"""
|
| 308 |
+
assert isinstance(
|
| 309 |
+
raw_input,
|
| 310 |
+
list), 'The input of VG evaluator should be a list of dict. '
|
| 311 |
+
raw_input = raw_input
|
| 312 |
+
|
| 313 |
+
for _index in tqdm(range(len(raw_input))):
|
| 314 |
+
if 'index' not in raw_input[_index]:
|
| 315 |
+
raw_input[_index]['index'] = len(self.save_buffer) + _index
|
| 316 |
+
|
| 317 |
+
if 'subclass' not in raw_input[_index]:
|
| 318 |
+
raw_input[_index]['subclass'] = 'non-class'
|
| 319 |
+
|
| 320 |
+
assert 'gt_bboxes' in raw_input[_index]
|
| 321 |
+
assert 'pred_bboxes' in raw_input[_index]
|
| 322 |
+
assert 'pred_scores' in raw_input[_index]
|
| 323 |
+
|
| 324 |
+
for mode in ['pred_bboxes', 'gt_bboxes']:
|
| 325 |
+
if (isinstance(raw_input[_index][mode], dict)
|
| 326 |
+
and 'center' in raw_input[_index][mode]):
|
| 327 |
+
raw_input[_index][mode] = [
|
| 328 |
+
torch.tensor(raw_input[_index][mode]['center']),
|
| 329 |
+
torch.tensor(raw_input[_index][mode]['size']).to(
|
| 330 |
+
torch.float32),
|
| 331 |
+
torch.tensor(raw_input[_index][mode]['rot']).to(
|
| 332 |
+
torch.float32)
|
| 333 |
+
]
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
def trun_box(box_list):
|
| 337 |
+
trun_box_list = []
|
| 338 |
+
for box in box_list:
|
| 339 |
+
trun_box_list.append([round(x,2) for x in box])
|
| 340 |
+
return trun_box_list
|
| 341 |
+
|
| 342 |
+
def evaluation_for_challenge(gt_data,pred_data):
|
| 343 |
+
inputs = []
|
| 344 |
+
for sample_ID in gt_data:
|
| 345 |
+
batch_result = {}
|
| 346 |
+
if sample_ID not in pred_data:
|
| 347 |
+
batch_result["pred_scores"] = torch.zeros(0,9)
|
| 348 |
+
batch_result["pred_bboxes"] = torch.zeros(0,)
|
| 349 |
+
else:
|
| 350 |
+
batch_result["pred_scores"] = torch.tensor(pred_data[sample_ID]["score"])
|
| 351 |
+
batch_result["pred_bboxes"] = torch.tensor(trun_box(pred_data[sample_ID]["pred_bboxes"]))
|
| 352 |
+
|
| 353 |
+
batch_result["gt_bboxes"] = torch.tensor(gt_data[sample_ID])
|
| 354 |
+
batch_result["subclass"] = sample_ID.split('__')[0]
|
| 355 |
+
inputs.append(batch_result)
|
| 356 |
+
|
| 357 |
+
vg_evaluator = VisualGroundingEvaluator()
|
| 358 |
+
vg_evaluator.update(inputs)
|
| 359 |
+
results = vg_evaluator.start_evaluation()
|
| 360 |
+
#vg_evaluator.print_result()
|
| 361 |
+
return results['overall']
|