File size: 39,436 Bytes
88ad01d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
from abc import abstractmethod
from typing import List,Iterator, Optional, Sequence, Tuple, Union

import numpy as np
import torch

try:
    from pytorch3d.ops import box3d_overlap
    from pytorch3d.transforms import (euler_angles_to_matrix,
                                      matrix_to_euler_angles)
except ImportError:
    box3d_overlap = None
    euler_angles_to_matrix = None
    matrix_to_euler_angles = None
from torch import Tensor


class BaseInstance3DBoxes:
    """Base class for 3D Boxes.

    Note:
        The box is bottom centered, i.e. the relative position of origin in the
        box is (0.5, 0.5, 0).

    Args:
        tensor (Tensor or np.ndarray or Sequence[Sequence[float]]): The boxes
            data with shape (N, box_dim).
        box_dim (int): Number of the dimension of a box. Each row is
            (x, y, z, x_size, y_size, z_size, yaw). Defaults to 7.
        with_yaw (bool): Whether the box is with yaw rotation. If False, the
            value of yaw will be set to 0 as minmax boxes. Defaults to True.
        origin (Tuple[float]): Relative position of the box origin.
            Defaults to (0.5, 0.5, 0). This will guide the box be converted to
            (0.5, 0.5, 0) mode.

    Attributes:
        tensor (Tensor): Float matrix with shape (N, box_dim).
        box_dim (int): Integer indicating the dimension of a box. Each row is
            (x, y, z, x_size, y_size, z_size, yaw, ...).
        with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
            boxes.
    """

    YAW_AXIS: int = 0

    def __init__(
        self,
        tensor: Union[Tensor, np.ndarray, Sequence[Sequence[float]]],
        box_dim: int = 7,
        with_yaw: bool = True,
        origin: Tuple[float, float, float] = (0.5, 0.5, 0)
    ) -> None:
        if isinstance(tensor, Tensor):
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that does
            # not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((-1, box_dim))
        assert tensor.dim() == 2 and tensor.size(-1) == box_dim, \
            ('The box dimension must be 2 and the length of the last '
             f'dimension must be {box_dim}, but got boxes with shape '
             f'{tensor.shape}.')

        if tensor.shape[-1] == 6:
            # If the dimension of boxes is 6, we expand box_dim by padding 0 as
            # a fake yaw and set with_yaw to False
            assert box_dim == 6
            fake_rot = tensor.new_zeros(tensor.shape[0], 1)
            tensor = torch.cat((tensor, fake_rot), dim=-1)
            self.box_dim = box_dim + 1
            self.with_yaw = False
        else:
            self.box_dim = box_dim
            self.with_yaw = with_yaw
        self.tensor = tensor.clone()

        if origin != (0.5, 0.5, 0):
            dst = self.tensor.new_tensor((0.5, 0.5, 0))
            src = self.tensor.new_tensor(origin)
            self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)

    @property
    def shape(self) -> torch.Size:
        """torch.Size: Shape of boxes."""
        return self.tensor.shape

    @property
    def volume(self) -> Tensor:
        """Tensor: A vector with volume of each box in shape (N, )."""
        return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]

    @property
    def dims(self) -> Tensor:
        """Tensor: Size dimensions of each box in shape (N, 3)."""
        return self.tensor[:, 3:6]

    @property
    def yaw(self) -> Tensor:
        """Tensor: A vector with yaw of each box in shape (N, )."""
        return self.tensor[:, 6]

    @property
    def height(self) -> Tensor:
        """Tensor: A vector with height of each box in shape (N, )."""
        return self.tensor[:, 5]

    @property
    def top_height(self) -> Tensor:
        """Tensor: A vector with top height of each box in shape (N, )."""
        return self.bottom_height + self.height

    @property
    def bottom_height(self) -> Tensor:
        """Tensor: A vector with bottom height of each box in shape (N, )."""
        return self.tensor[:, 2]

    @property
    def center(self) -> Tensor:
        """Calculate the center of all the boxes.

        Note:
            In MMDetection3D's convention, the bottom center is usually taken
            as the default center.

            The relative position of the centers in different kinds of boxes
            are different, e.g., the relative center of a boxes is
            (0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is
            recommended to use ``bottom_center`` or ``gravity_center`` for
            clearer usage.

        Returns:
            Tensor: A tensor with center of each box in shape (N, 3).
        """
        return self.bottom_center

    @property
    def bottom_center(self) -> Tensor:
        """Tensor: A tensor with center of each box in shape (N, 3)."""
        return self.tensor[:, :3]

    @property
    def gravity_center(self) -> Tensor:
        """Tensor: A tensor with center of each box in shape (N, 3)."""
        bottom_center = self.bottom_center
        gravity_center = torch.zeros_like(bottom_center)
        gravity_center[:, :2] = bottom_center[:, :2]
        gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5
        return gravity_center

    @property
    def corners(self) -> Tensor:
        """Tensor: A tensor with 8 corners of each box in shape (N, 8, 3)."""
        pass

    @property
    def bev(self) -> Tensor:
        """Tensor: 2D BEV box of each box with rotation in XYWHR format, in
        shape (N, 5)."""
        return self.tensor[:, [0, 1, 3, 4, 6]]

    def in_range_bev(
            self, box_range: Union[Tensor, np.ndarray,
                                   Sequence[float]]) -> Tensor:
        """Check whether the boxes are in the given range.

        Args:
            box_range (Tensor or np.ndarray or Sequence[float]): The range of
                box in order of (x_min, y_min, x_max, y_max).

        Note:
            The original implementation of SECOND checks whether boxes in a
            range by checking whether the points are in a convex polygon, we
            reduce the burden for simpler cases.

        Returns:
            Tensor: A binary vector indicating whether each box is inside the
            reference range.
        """
        in_range_flags = ((self.bev[:, 0] > box_range[0])
                          & (self.bev[:, 1] > box_range[1])
                          & (self.bev[:, 0] < box_range[2])
                          & (self.bev[:, 1] < box_range[3]))
        return in_range_flags

    @abstractmethod
    def rotate(
        self,
        angle: Union[Tensor, np.ndarray, float],
        points: Optional[Union[Tensor, np.ndarray]] = None
    ) -> Union[Tuple[Tensor, Tensor], Tuple[np.ndarray, np.ndarray],
               Tuple[Tensor], None]:
        """Rotate boxes with points (optional) with the given angle or rotation
        matrix.

        Args:
            angle (Tensor or np.ndarray or float): Rotation angle or rotation
                matrix.
            points (Tensor or np.ndarray or :obj:``, optional):
                Points to rotate. Defaults to None.

        Returns:
            tuple or None: When ``points`` is None, the function returns None,
            otherwise it returns the rotated points and the rotation matrix
            ``rot_mat_T``.
        """
        pass

    @abstractmethod
    def flip(
        self,
        bev_direction: str = 'horizontal',
        points: Optional[Union[Tensor, np.ndarray, ]] = None
    ) -> Union[Tensor, np.ndarray, None]:
        """Flip the boxes in BEV along given BEV direction.

        Args:
            bev_direction (str): Direction by which to flip. Can be chosen from
                'horizontal' and 'vertical'. Defaults to 'horizontal'.
            points (Tensor or np.ndarray or :obj:``, optional):
                Points to flip. Defaults to None.

        Returns:
            Tensor or np.ndarray or :obj:`` or None: When ``points``
            is None, the function returns None, otherwise it returns the
            flipped points.
        """
        pass

    def translate(self, trans_vector: Union[Tensor, np.ndarray]) -> None:
        """Translate boxes with the given translation vector.

        Args:
            trans_vector (Tensor or np.ndarray): Translation vector of size
                1x3.
        """
        if not isinstance(trans_vector, Tensor):
            trans_vector = self.tensor.new_tensor(trans_vector)
        self.tensor[:, :3] += trans_vector

    def in_range_3d(
            self, box_range: Union[Tensor, np.ndarray,
                                   Sequence[float]]) -> Tensor:
        """Check whether the boxes are in the given range.

        Args:
            box_range (Tensor or np.ndarray or Sequence[float]): The range of
                box (x_min, y_min, z_min, x_max, y_max, z_max).

        Note:
            In the original implementation of SECOND, checking whether a box in
            the range checks whether the points are in a convex polygon, we try
            to reduce the burden for simpler cases.

        Returns:
            Tensor: A binary vector indicating whether each point is inside the
            reference range.
        """
        in_range_flags = ((self.tensor[:, 0] > box_range[0])
                          & (self.tensor[:, 1] > box_range[1])
                          & (self.tensor[:, 2] > box_range[2])
                          & (self.tensor[:, 0] < box_range[3])
                          & (self.tensor[:, 1] < box_range[4])
                          & (self.tensor[:, 2] < box_range[5]))
        return in_range_flags

    @abstractmethod
    def convert_to(self,
                   dst: int,
                   rt_mat: Optional[Union[Tensor, np.ndarray]] = None,
                   correct_yaw: bool = False) -> 'BaseInstance3DBoxes':
        """Convert self to ``dst`` mode.

        Args:
            dst (int): The target Box mode.
            rt_mat (Tensor or np.ndarray, optional): The rotation and
                translation matrix between different coordinates.
                Defaults to None. The conversion from ``src`` coordinates to
                ``dst`` coordinates usually comes along the change of sensors,
                e.g., from camera to LiDAR. This requires a transformation
                matrix.
            correct_yaw (bool): Whether to convert the yaw angle to the target
                coordinate. Defaults to False.

        Returns:
            :obj:`BaseInstance3DBoxes`: The converted box of the same type in
            the ``dst`` mode.
        """
        pass

    def scale(self, scale_factor: float) -> None:
        """Scale the box with horizontal and vertical scaling factors.

        Args:
            scale_factors (float): Scale factors to scale the boxes.
        """
        self.tensor[:, :6] *= scale_factor
        self.tensor[:, 7:] *= scale_factor  # velocity

    def nonempty(self, threshold: float = 0.0) -> Tensor:
        """Find boxes that are non-empty.

        A box is considered empty if either of its side is no larger than
        threshold.

        Args:
            threshold (float): The threshold of minimal sizes. Defaults to 0.0.

        Returns:
            Tensor: A binary vector which represents whether each box is empty
            (False) or non-empty (True).
        """
        box = self.tensor
        size_x = box[..., 3]
        size_y = box[..., 4]
        size_z = box[..., 5]
        keep = ((size_x > threshold)
                & (size_y > threshold) & (size_z > threshold))
        return keep

    def __getitem__(
            self, item: Union[int, slice, np.ndarray,
                              Tensor]) -> 'BaseInstance3DBoxes':
        """
        Args:
            item (int or slice or np.ndarray or Tensor): Index of boxes.

        Note:
            The following usage are allowed:

            1. `new_boxes = boxes[3]`: Return a `Boxes` that contains only one
               box.
            2. `new_boxes = boxes[2:10]`: Return a slice of boxes.
            3. `new_boxes = boxes[vector]`: Where vector is a
               torch.BoolTensor with `length = len(boxes)`. Nonzero elements in
               the vector will be selected.

            Note that the returned Boxes might share storage with this Boxes,
            subject to PyTorch's indexing semantics.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new object of
            :class:`BaseInstance3DBoxes` after indexing.
        """
        original_type = type(self)
        if isinstance(item, int):
            return original_type(self.tensor[item].view(1, -1),
                                 box_dim=self.box_dim,
                                 with_yaw=self.with_yaw)
        b = self.tensor[item]
        assert b.dim() == 2, \
            f'Indexing on Boxes with {item} failed to return a matrix!'
        return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)

    def __len__(self) -> int:
        """int: Number of boxes in the current object."""
        return self.tensor.shape[0]

    def __repr__(self) -> str:
        """str: Return a string that describes the object."""
        return self.__class__.__name__ + '(\n    ' + str(self.tensor) + ')'

    @classmethod
    def cat(cls, boxes_list: Sequence['BaseInstance3DBoxes']
            ) -> 'BaseInstance3DBoxes':
        """Concatenate a list of Boxes into a single Boxes.

        Args:
            boxes_list (Sequence[:obj:`BaseInstance3DBoxes`]): List of boxes.

        Returns:
            :obj:`BaseInstance3DBoxes`: The concatenated boxes.
        """
        assert isinstance(boxes_list, (list, tuple))
        if len(boxes_list) == 0:
            return cls(torch.empty(0))
        assert all(isinstance(box, cls) for box in boxes_list)

        # use torch.cat (v.s. layers.cat)
        # so the returned boxes never share storage with input
        cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0),
                        box_dim=boxes_list[0].box_dim,
                        with_yaw=boxes_list[0].with_yaw)
        return cat_boxes

    def numpy(self) -> np.ndarray:
        """Reload ``numpy`` from self.tensor."""
        return self.tensor.numpy()

    def to(self, device: Union[str, torch.device], *args,
           **kwargs) -> 'BaseInstance3DBoxes':
        """Convert current boxes to a specific device.

        Args:
            device (str or :obj:`torch.device`): The name of the device.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new boxes object on the specific
            device.
        """
        original_type = type(self)
        return original_type(self.tensor.to(device, *args, **kwargs),
                             box_dim=self.box_dim,
                             with_yaw=self.with_yaw)

    def cpu(self) -> 'BaseInstance3DBoxes':
        """Convert current boxes to cpu device.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new boxes object on the cpu device.
        """
        original_type = type(self)
        return original_type(self.tensor.cpu(),
                             box_dim=self.box_dim,
                             with_yaw=self.with_yaw)

    def cuda(self, *args, **kwargs) -> 'BaseInstance3DBoxes':
        """Convert current boxes to cuda device.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new boxes object on the cuda device.
        """
        original_type = type(self)
        return original_type(self.tensor.cuda(*args, **kwargs),
                             box_dim=self.box_dim,
                             with_yaw=self.with_yaw)

    def clone(self) -> 'BaseInstance3DBoxes':
        """Clone the boxes.

        Returns:
            :obj:`BaseInstance3DBoxes`: Box object with the same properties as
            self.
        """
        original_type = type(self)
        return original_type(self.tensor.clone(),
                             box_dim=self.box_dim,
                             with_yaw=self.with_yaw)

    def detach(self) -> 'BaseInstance3DBoxes':
        """Detach the boxes.

        Returns:
            :obj:`BaseInstance3DBoxes`: Box object with the same properties as
            self.
        """
        original_type = type(self)
        return original_type(self.tensor.detach(),
                             box_dim=self.box_dim,
                             with_yaw=self.with_yaw)

    @property
    def device(self) -> torch.device:
        """torch.device: The device of the boxes are on."""
        return self.tensor.device

    def __iter__(self) -> Iterator[Tensor]:
        """Yield a box as a Tensor at a time.

        Returns:
            Iterator[Tensor]: A box of shape (box_dim, ).
        """
        yield from self.tensor

    @classmethod
    def height_overlaps(cls, boxes1: 'BaseInstance3DBoxes',
                        boxes2: 'BaseInstance3DBoxes') -> Tensor:
        """Calculate height overlaps of two boxes.

        Note:
            This function calculates the height overlaps between ``boxes1`` and
            ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.

        Args:
            boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
            boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.

        Returns:
            Tensor: Calculated height overlap of the boxes.
        """
        assert isinstance(boxes1, BaseInstance3DBoxes)
        assert isinstance(boxes2, BaseInstance3DBoxes)
        assert type(boxes1) == type(boxes2), \
            '"boxes1" and "boxes2" should be in the same type, ' \
            f'but got {type(boxes1)} and {type(boxes2)}.'

        boxes1_top_height = boxes1.top_height.view(-1, 1)
        boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
        boxes2_top_height = boxes2.top_height.view(1, -1)
        boxes2_bottom_height = boxes2.bottom_height.view(1, -1)

        heighest_of_bottom = torch.max(boxes1_bottom_height,
                                       boxes2_bottom_height)
        lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
        overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
        return overlaps_h

    def new_box(
        self, data: Union[Tensor, np.ndarray, Sequence[Sequence[float]]]
    ) -> 'BaseInstance3DBoxes':
        """Create a new box object with data.

        The new box and its tensor has the similar properties as self and
        self.tensor, respectively.

        Args:
            data (Tensor or np.ndarray or Sequence[Sequence[float]]): Data to
                be copied.

        Returns:
            :obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, the
            object's other properties are similar to ``self``.
        """
        new_tensor = self.tensor.new_tensor(data) \
            if not isinstance(data, Tensor) else data.to(self.device)
        original_type = type(self)
        return original_type(new_tensor,
                             box_dim=self.box_dim,
                             with_yaw=self.with_yaw)


class EulerInstance3DBoxes(BaseInstance3DBoxes):
    """3D boxes with 1-D orientation represented by three Euler angles.

    See https://en.wikipedia.org/wiki/Euler_angles for
        regarding the definition of Euler angles.

    Attributes:
        tensor (torch.Tensor): Float matrix of N x box_dim.
        box_dim (int): Integer indicates the dimension of a box
            Each row is (x, y, z, x_size, y_size, z_size, alpha, beta, gamma).
    """

    def __init__(self, tensor, box_dim=9, origin=(0.5, 0.5, 0.5)):
        if isinstance(tensor, torch.Tensor):
            device = tensor.device
        else:
            device = torch.device('cpu')
        tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
        if tensor.numel() == 0:
            # Use reshape, so we don't end up creating a new tensor that
            # does not depend on the inputs (and consequently confuses jit)
            tensor = tensor.reshape((0, box_dim)).to(dtype=torch.float32,
                                                     device=device)
        assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size()

        if tensor.shape[-1] == 6:
            # If the dimension of boxes is 6, we expand box_dim by padding
            # (0, 0, 0) as a fake euler angle.
            assert box_dim == 6
            fake_rot = tensor.new_zeros(tensor.shape[0], 3)
            tensor = torch.cat((tensor, fake_rot), dim=-1)
            self.box_dim = box_dim + 3
        elif tensor.shape[-1] == 7:
            assert box_dim == 7
            fake_euler = tensor.new_zeros(tensor.shape[0], 2)
            tensor = torch.cat((tensor, fake_euler), dim=-1)
            self.box_dim = box_dim + 2
        else:
            assert tensor.shape[-1] == 9
            self.box_dim = box_dim
        self.tensor = tensor.clone()

        self.origin = origin
        if origin != (0.5, 0.5, 0.5):
            dst = self.tensor.new_tensor((0.5, 0.5, 0.5))
            src = self.tensor.new_tensor(origin)
            self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)

    def get_corners(self, tensor1):
        """torch.Tensor: Coordinates of corners of all the boxes
        in shape (N, 8, 3).

        Convert the boxes to corners in clockwise order, in form of
        ``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``

        .. code-block:: none

                                           up z
                            front y           ^
                                 /            |
                                /             |
                  (x0, y1, z1) + -----------  + (x1, y1, z1)
                              /|            / |
                             / |           /  |
               (x0, y0, z1) + ----------- +   + (x1, y1, z0)
                            |  /      .   |  /
                            | / origin    | /
               (x0, y0, z0) + ----------- + --------> right x
                                          (x1, y0, z0)
        """
        if tensor1.numel() == 0:
            return torch.empty([0, 8, 3], device=tensor1.device)

        dims = tensor1[:, 3:6]
        corners_norm = torch.from_numpy(
            np.stack(np.unravel_index(np.arange(8), [2] * 3),
                     axis=1)).to(device=dims.device, dtype=dims.dtype)

        corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
        # use relative origin
        assert self.origin == (0.5, 0.5, 0.5), \
            'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
        corners_norm = corners_norm - dims.new_tensor(self.origin)
        corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])

        # rotate
        corners = rotation_3d_in_euler(corners, tensor1[:, 6:])

        corners += tensor1[:, :3].view(-1, 1, 3)
        return corners

    @classmethod
    def overlaps(cls, boxes1, boxes2, mode='iou', eps=1e-4):
        """Calculate 3D overlaps of two boxes.

        Note:
            This function calculates the overlaps between ``boxes1`` and
            ``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.

        Args:
            boxes1 (:obj:`EulerInstance3DBoxes`): Boxes 1 contain N boxes.
            boxes2 (:obj:`EulerInstance3DBoxes`): Boxes 2 contain M boxes.
            mode (str): Mode of iou calculation. Defaults to 'iou'.
            eps (bool): Epsilon. Defaults to 1e-4.

        Returns:
            torch.Tensor: Calculated 3D overlaps of the boxes.
        """
        assert isinstance(boxes1, EulerInstance3DBoxes)
        assert isinstance(boxes2, EulerInstance3DBoxes)
        assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
            f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'

        assert mode in ['iou']

        rows = len(boxes1)
        cols = len(boxes2)
        if rows * cols == 0:
            return boxes1.tensor.new(rows, cols)

        corners1 = boxes1.corners
        corners2 = boxes2.corners
        _, iou3d = box3d_overlap(corners1, corners2, eps=eps)
        return iou3d

    @property
    def gravity_center(self):
        """torch.Tensor: A tensor with center of each box in shape (N, 3)."""
        return self.tensor[:, :3]

    @property
    def corners(self):
        """torch.Tensor: Coordinates of corners of all the boxes
        in shape (N, 8, 3).

        Convert the boxes to corners in clockwise order, in form of
        ``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``

        .. code-block:: none

                                           up z
                            front y           ^
                                 /            |
                                /             |
                  (x0, y1, z1) + -----------  + (x1, y1, z1)
                              /|            / |
                             / |           /  |
               (x0, y0, z1) + ----------- +   + (x1, y1, z0)
                            |  /      .   |  /
                            | / origin    | /
               (x0, y0, z0) + ----------- + --------> right x
                                          (x1, y0, z0)
        """
        if self.tensor.numel() == 0:
            return torch.empty([0, 8, 3], device=self.tensor.device)

        dims = self.dims
        corners_norm = torch.from_numpy(
            np.stack(np.unravel_index(np.arange(8), [2] * 3),
                     axis=1)).to(device=dims.device, dtype=dims.dtype)

        corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
        # use relative origin
        assert self.origin == (0.5, 0.5, 0.5), \
            'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
        corners_norm = corners_norm - dims.new_tensor(self.origin)
        corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])

        # rotate
        corners = rotation_3d_in_euler(corners, self.tensor[:, 6:])

        corners += self.tensor[:, :3].view(-1, 1, 3)
        return corners

    def transform(self, matrix):
        if self.tensor.shape[0] == 0:
            return
        if not isinstance(matrix, torch.Tensor):
            matrix = self.tensor.new_tensor(matrix)
        points = self.tensor[:, :3]
        constant = points.new_ones(points.shape[0], 1)
        points_extend = torch.concat([points, constant], dim=-1)
        points_trans = torch.matmul(points_extend, matrix.transpose(-2,
                                                                    -1))[:, :3]

        size = self.tensor[:, 3:6]

        # angle_delta = matrix_to_euler_angles(matrix[:3,:3], 'ZXY')
        # angle = self.tensor[:,6:] + angle_delta
        ori_matrix = euler_angles_to_matrix(self.tensor[:, 6:], 'ZXY')
        rot_matrix = matrix[:3, :3].expand_as(ori_matrix)
        final = torch.bmm(rot_matrix, ori_matrix)
        angle = matrix_to_euler_angles(final, 'ZXY')

        self.tensor = torch.cat([points_trans, size, angle], dim=-1)

    def scale(self, scale_factor: float) -> None:
        """Scale the box with horizontal and vertical scaling factors.

        Args:
            scale_factors (float): Scale factors to scale the boxes.
        """
        self.tensor[:, :6] *= scale_factor

    def rotate(self, angle, points=None):
        """Rotate boxes with points (optional) with the given angle or rotation
        matrix.

        Args:
            angle (float | torch.Tensor | np.ndarray):
                Rotation angle or rotation matrix.
            points (torch.Tensor | np.ndarray | :obj:``, optional):
                Points to rotate. Defaults to None.

        Returns:
            tuple or None: When ``points`` is None, the function returns
                None, otherwise it returns the rotated points and the
                rotation matrix ``rot_mat_T``.
        """
        if not isinstance(angle, torch.Tensor):
            angle = self.tensor.new_tensor(angle)

        if angle.numel() == 1:  # only given yaw angle for rotation
            angle = self.tensor.new_tensor([angle, 0., 0.])
            rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
        elif angle.numel() == 3:
            rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
        elif angle.shape == torch.Size([3, 3]):
            rot_matrix = angle
        else:
            raise NotImplementedError

        rot_mat_T = rot_matrix.T
        transform_matrix = torch.eye(4)
        transform_matrix[:3, :3] = rot_matrix
        self.transform(transform_matrix)

        if points is not None:
            if isinstance(points, torch.Tensor):
                points[:, :3] = points[:, :3] @ rot_mat_T
            elif isinstance(points, np.ndarray):
                rot_mat_T = rot_mat_T.cpu().numpy()
                points[:, :3] = np.dot(points[:, :3], rot_mat_T)
            elif isinstance(points, ):
                points.rotate(rot_mat_T)
            else:
                raise ValueError
            return points, rot_mat_T
        else:
            return rot_mat_T

    def flip(self, direction='X'):
        """Flip the boxes along the corresponding axis.

        Args:
            direction (str, optional): Flip axis. Defaults to 'X'.
        """
        assert direction in ['X', 'Y', 'Z']
        if direction == 'X':
            self.tensor[:, 0] = -self.tensor[:, 0]
            self.tensor[:, 6] = -self.tensor[:, 6] + np.pi
            self.tensor[:, 8] = -self.tensor[:, 8]
        elif direction == 'Y':
            self.tensor[:, 1] = -self.tensor[:, 1]
            self.tensor[:, 6] = -self.tensor[:, 6]
            self.tensor[:, 7] = -self.tensor[:, 7] + np.pi
        elif direction == 'Z':
            self.tensor[:, 2] = -self.tensor[:, 2]
            self.tensor[:, 7] = -self.tensor[:, 7]
            self.tensor[:, 8] = -self.tensor[:, 8] + np.pi


def rotation_3d_in_euler(points, angles, return_mat=False, clockwise=False):
    """Rotate points by angles according to axis.

    Args:
        points (np.ndarray | torch.Tensor | list | tuple ):
            Points of shape (N, M, 3).
        angles (np.ndarray | torch.Tensor | list | tuple):
            Vector of angles in shape (N, 3)
        return_mat: Whether or not return the rotation matrix (transposed).
            Defaults to False.
        clockwise: Whether the rotation is clockwise. Defaults to False.

    Raises:
        ValueError: when the axis is not in range [0, 1, 2], it will
            raise value error.

    Returns:
        (torch.Tensor | np.ndarray): Rotated points in shape (N, M, 3).
    """
    batch_free = len(points.shape) == 2
    if batch_free:
        points = points[None]

    if len(angles.shape) == 1:
        angles = angles.expand(points.shape[:1] + (3, ))
        # angles = torch.full(points.shape[:1], angles)

    assert len(points.shape) == 3 and len(angles.shape) == 2 \
        and points.shape[0] == angles.shape[0], f'Incorrect shape of points ' \
        f'angles: {points.shape}, {angles.shape}'

    assert points.shape[-1] in [2, 3], \
        f'Points size should be 2 or 3 instead of {points.shape[-1]}'
    
    rot_mat_T = euler_angles_to_matrix(angles, 'ZXY') # N, 3,3
   
    rot_mat_T = rot_mat_T.transpose(-2, -1)

    if clockwise:
        raise NotImplementedError('clockwise')

    if points.shape[0] == 0:
        points_new = points
    else:
        points_new = torch.bmm(points, rot_mat_T)

    if batch_free:
        points_new = points_new.squeeze(0)

    if return_mat:
        if batch_free:
            rot_mat_T = rot_mat_T.squeeze(0)
        return points_new, rot_mat_T
    else:
        return points_new


def _axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray:
    """Return the rotation matrices for one of the rotations about an axis of
    which Euler angles describe, for each value of the angle given.

    Args:
        axis: Axis label "X" or "Y or "Z".
        angle: any shape tensor of Euler angles in radians

    Returns:
        Rotation matrices as tensor of shape (..., 3, 3).
    """

    cos = np.cos(angle)
    sin = np.sin(angle)
    one = np.ones_like(angle)
    zero = np.zeros_like(angle)

    if axis == 'X':
        R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
    elif axis == 'Y':
        R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
    elif axis == 'Z':
        R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
    else:
        raise ValueError('letter must be either X, Y or Z.')

    return np.stack(R_flat, -1).reshape(angle.shape + (3, 3))





def is_inside_box(points, center, size, rotation_mat):
    """Check if points are inside a 3D bounding box.

    Args:
        points: 3D points, numpy array of shape (n, 3).
        center: center of the box, numpy array of shape (3, ).
        size: size of the box, numpy array of shape (3, ).
        rotation_mat: rotation matrix of the box,
            numpy array of shape (3, 3).

    Returns:
        Boolean array of shape (n, )
            indicating if each point is inside the box.
    """
    assert points.shape[1] == 3, 'points should be of shape (n, 3)'
    points = np.array(points)  # n,3
    center = np.array(center)  # n, 3
    size = np.array(size)  # n, 3
    rotation_mat = np.array(rotation_mat)
    assert rotation_mat.shape == (
        3,
        3,
    ), f'R should be shape (3,3), but got {rotation_mat.shape}'
    pcd_local = (points - center) @ rotation_mat  # n, 3
    pcd_local = pcd_local / size * 2.0  # scale to [-1, 1] # n, 3
    pcd_local = abs(pcd_local)
    return ((pcd_local[:, 0] <= 1)
            & (pcd_local[:, 1] <= 1)
            & (pcd_local[:, 2] <= 1))


def normalize_box(scene_pcd, embodied_scan_bbox):
    """Find the smallest 6 DoF box that covers these points which 9 DoF box
    covers.

    Args:
        scene_pcd (Tensor / ndarray):
             (..., 3)
        embodied_scan_bbox (Tensor / ndarray):
             (9,) 9 DoF box

    Returns:
        Tensor: Transformed 3D box of shape (N, 8, 3).
    """

    bbox = np.array(embodied_scan_bbox)
    orientation = euler_to_matrix_np(bbox[np.newaxis, 6:])[0]
    position = np.array(bbox[:3])
    size = np.array(bbox[3:6])
    obj_mask = np.array(
        is_inside_box(scene_pcd[:, :3], position, size, orientation),
        dtype=bool,
    )
    obj_pc = scene_pcd[obj_mask]

    # resume the same if there's None
    if obj_pc.shape[0] < 1:
        return embodied_scan_bbox[:6]
    xmin = np.min(obj_pc[:, 0])
    ymin = np.min(obj_pc[:, 1])
    zmin = np.min(obj_pc[:, 2])
    xmax = np.max(obj_pc[:, 0])
    ymax = np.max(obj_pc[:, 1])
    zmax = np.max(obj_pc[:, 2])
    bbox = np.array([
        (xmin + xmax) / 2,
        (ymin + ymax) / 2,
        (zmin + zmax) / 2,
        xmax - xmin,
        ymax - ymin,
        zmax - zmin,
    ])
    return bbox


def from_9dof_to_6dof(pcd_data, bbox_):
    # that's a kind of loss of information, so we don't recommend
    return normalize_box(pcd_data, bbox_)


def bbox_to_corners(centers, sizes, rot_mat: torch.Tensor) -> torch.Tensor:
    """Transform bbox parameters to the 8 corners.

    Args:
        bbox (Tensor): 3D box of shape (N, 6) or (N, 7) or (N, 9).

    Returns:
        Tensor: Transformed 3D box of shape (N, 8, 3).
    """
    device = centers.device
    use_batch = False
    if len(centers.shape) == 3:
        use_batch = True
        batch_size, n_proposals = centers.shape[0], centers.shape[1]
        centers = centers.reshape(-1, 3)
        sizes = sizes.reshape(-1, 3)
        rot_mat = rot_mat.reshape(-1, 3, 3)

    n_box = centers.shape[0]
    if use_batch:
        assert n_box == batch_size * n_proposals
    centers = centers.unsqueeze(1).repeat(1, 8, 1)  # shape (N, 8, 3)
    half_sizes = sizes.unsqueeze(1).repeat(1, 8, 1) / 2  # shape (N, 8, 3)
    eight_corners_x = (torch.tensor([1, 1, 1, 1, -1, -1, -1, -1],
                                    device=device).unsqueeze(0).repeat(
                                        n_box, 1))  # shape (N, 8)
    eight_corners_y = (torch.tensor([1, 1, -1, -1, 1, 1, -1, -1],
                                    device=device).unsqueeze(0).repeat(
                                        n_box, 1))  # shape (N, 8)
    eight_corners_z = (torch.tensor([1, -1, -1, 1, 1, -1, -1, 1],
                                    device=device).unsqueeze(0).repeat(
                                        n_box, 1))  # shape (N, 8)
    eight_corners = torch.stack(
        (eight_corners_x, eight_corners_y, eight_corners_z),
        dim=-1)  # shape (N, 8, 3)
    eight_corners = eight_corners * half_sizes  # shape (N, 8, 3)
    # rot_mat: (N, 3, 3), eight_corners: (N, 8, 3)
    rotated_corners = torch.matmul(eight_corners,
                                   rot_mat.transpose(1, 2))  # shape (N, 8, 3)
    res = centers + rotated_corners
    if use_batch:
        res = res.reshape(batch_size, n_proposals, 8, 3)
    return res


def euler_iou3d_corners(boxes1, boxes2):
    rows = boxes1.shape[0]
    cols = boxes2.shape[0]
    if rows * cols == 0:
        return boxes1.new(rows, cols)

    _, iou3d = box3d_overlap(boxes1, boxes2)
    return iou3d


def euler_iou3d_bbox(center1, size1, rot1, center2, size2, rot2):
    """Calculate the 3D IoU between two grounps of 9DOF bounding boxes.

    Args:
        center1 (Tensor): (n, cx, cy, cz) of grounp1.
        size1 (Tensor): (n, l, w, h) of grounp1.
        rot1 (Tensor): rot matrix of grounp1.
        center1 (Tensor): (m, cx, cy, cz) of grounp2.
        size1 (Tensor): (m, l, w, h) of grounp2.
        rot1 (Tensor): rot matrix of grounp2.

    Returns:
        numpy.ndarray: (n, m) the 3D IoU.
    """
    if torch.cuda.is_available():
        center1 = center1.cuda()
        size1 = size1.cuda()
        rot1 = rot1.cuda()
        center2 = center2.cuda()
        size2 = size2.cuda()
        rot2 = rot2.cuda()
    corners1 = bbox_to_corners(center1, size1, rot1)
    corners2 = bbox_to_corners(center2, size2, rot2)
    result = euler_iou3d_corners(corners1, corners2)

    if torch.cuda.is_available():
        result = result.detach().cpu()
    return result.numpy()


def index_box(boxes: List[torch.tensor],
              indices: Union[List[torch.tensor], torch.tensor])\
            -> Union[List[torch.tensor], torch.tensor]:
    """Convert a grounp of bounding boxes represented in [center, size, rot]
    format to 9 DoF format.

    Args:
        box (list/tuple, tensor): boxes in a grounp.

    Returns:
        Tensor : 9 DoF format. (num,9)
    """
    if isinstance(boxes, (list, tuple)):
        return [index_box(box, indices) for box in boxes]
    else:
        return boxes[indices]


def to_9dof_box(box: List[torch.tensor]):
    """Convert a grounp of bounding boxes represented in [center, size, rot]
    format to 9 DoF format.

    Args:
        box (list/tuple, tensor): boxes in a grounp.

    Returns:
        Tensor : 9 DoF format. (num,9)
    """
    
    return EulerInstance3DBoxes(box, origin=(0.5, 0.5, 0.5))