Spaces:
Sleeping
Sleeping
File size: 39,436 Bytes
88ad01d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 |
from abc import abstractmethod
from typing import List,Iterator, Optional, Sequence, Tuple, Union
import numpy as np
import torch
try:
from pytorch3d.ops import box3d_overlap
from pytorch3d.transforms import (euler_angles_to_matrix,
matrix_to_euler_angles)
except ImportError:
box3d_overlap = None
euler_angles_to_matrix = None
matrix_to_euler_angles = None
from torch import Tensor
class BaseInstance3DBoxes:
"""Base class for 3D Boxes.
Note:
The box is bottom centered, i.e. the relative position of origin in the
box is (0.5, 0.5, 0).
Args:
tensor (Tensor or np.ndarray or Sequence[Sequence[float]]): The boxes
data with shape (N, box_dim).
box_dim (int): Number of the dimension of a box. Each row is
(x, y, z, x_size, y_size, z_size, yaw). Defaults to 7.
with_yaw (bool): Whether the box is with yaw rotation. If False, the
value of yaw will be set to 0 as minmax boxes. Defaults to True.
origin (Tuple[float]): Relative position of the box origin.
Defaults to (0.5, 0.5, 0). This will guide the box be converted to
(0.5, 0.5, 0) mode.
Attributes:
tensor (Tensor): Float matrix with shape (N, box_dim).
box_dim (int): Integer indicating the dimension of a box. Each row is
(x, y, z, x_size, y_size, z_size, yaw, ...).
with_yaw (bool): If True, the value of yaw will be set to 0 as minmax
boxes.
"""
YAW_AXIS: int = 0
def __init__(
self,
tensor: Union[Tensor, np.ndarray, Sequence[Sequence[float]]],
box_dim: int = 7,
with_yaw: bool = True,
origin: Tuple[float, float, float] = (0.5, 0.5, 0)
) -> None:
if isinstance(tensor, Tensor):
device = tensor.device
else:
device = torch.device('cpu')
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
if tensor.numel() == 0:
# Use reshape, so we don't end up creating a new tensor that does
# not depend on the inputs (and consequently confuses jit)
tensor = tensor.reshape((-1, box_dim))
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, \
('The box dimension must be 2 and the length of the last '
f'dimension must be {box_dim}, but got boxes with shape '
f'{tensor.shape}.')
if tensor.shape[-1] == 6:
# If the dimension of boxes is 6, we expand box_dim by padding 0 as
# a fake yaw and set with_yaw to False
assert box_dim == 6
fake_rot = tensor.new_zeros(tensor.shape[0], 1)
tensor = torch.cat((tensor, fake_rot), dim=-1)
self.box_dim = box_dim + 1
self.with_yaw = False
else:
self.box_dim = box_dim
self.with_yaw = with_yaw
self.tensor = tensor.clone()
if origin != (0.5, 0.5, 0):
dst = self.tensor.new_tensor((0.5, 0.5, 0))
src = self.tensor.new_tensor(origin)
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
@property
def shape(self) -> torch.Size:
"""torch.Size: Shape of boxes."""
return self.tensor.shape
@property
def volume(self) -> Tensor:
"""Tensor: A vector with volume of each box in shape (N, )."""
return self.tensor[:, 3] * self.tensor[:, 4] * self.tensor[:, 5]
@property
def dims(self) -> Tensor:
"""Tensor: Size dimensions of each box in shape (N, 3)."""
return self.tensor[:, 3:6]
@property
def yaw(self) -> Tensor:
"""Tensor: A vector with yaw of each box in shape (N, )."""
return self.tensor[:, 6]
@property
def height(self) -> Tensor:
"""Tensor: A vector with height of each box in shape (N, )."""
return self.tensor[:, 5]
@property
def top_height(self) -> Tensor:
"""Tensor: A vector with top height of each box in shape (N, )."""
return self.bottom_height + self.height
@property
def bottom_height(self) -> Tensor:
"""Tensor: A vector with bottom height of each box in shape (N, )."""
return self.tensor[:, 2]
@property
def center(self) -> Tensor:
"""Calculate the center of all the boxes.
Note:
In MMDetection3D's convention, the bottom center is usually taken
as the default center.
The relative position of the centers in different kinds of boxes
are different, e.g., the relative center of a boxes is
(0.5, 1.0, 0.5) in camera and (0.5, 0.5, 0) in lidar. It is
recommended to use ``bottom_center`` or ``gravity_center`` for
clearer usage.
Returns:
Tensor: A tensor with center of each box in shape (N, 3).
"""
return self.bottom_center
@property
def bottom_center(self) -> Tensor:
"""Tensor: A tensor with center of each box in shape (N, 3)."""
return self.tensor[:, :3]
@property
def gravity_center(self) -> Tensor:
"""Tensor: A tensor with center of each box in shape (N, 3)."""
bottom_center = self.bottom_center
gravity_center = torch.zeros_like(bottom_center)
gravity_center[:, :2] = bottom_center[:, :2]
gravity_center[:, 2] = bottom_center[:, 2] + self.tensor[:, 5] * 0.5
return gravity_center
@property
def corners(self) -> Tensor:
"""Tensor: A tensor with 8 corners of each box in shape (N, 8, 3)."""
pass
@property
def bev(self) -> Tensor:
"""Tensor: 2D BEV box of each box with rotation in XYWHR format, in
shape (N, 5)."""
return self.tensor[:, [0, 1, 3, 4, 6]]
def in_range_bev(
self, box_range: Union[Tensor, np.ndarray,
Sequence[float]]) -> Tensor:
"""Check whether the boxes are in the given range.
Args:
box_range (Tensor or np.ndarray or Sequence[float]): The range of
box in order of (x_min, y_min, x_max, y_max).
Note:
The original implementation of SECOND checks whether boxes in a
range by checking whether the points are in a convex polygon, we
reduce the burden for simpler cases.
Returns:
Tensor: A binary vector indicating whether each box is inside the
reference range.
"""
in_range_flags = ((self.bev[:, 0] > box_range[0])
& (self.bev[:, 1] > box_range[1])
& (self.bev[:, 0] < box_range[2])
& (self.bev[:, 1] < box_range[3]))
return in_range_flags
@abstractmethod
def rotate(
self,
angle: Union[Tensor, np.ndarray, float],
points: Optional[Union[Tensor, np.ndarray]] = None
) -> Union[Tuple[Tensor, Tensor], Tuple[np.ndarray, np.ndarray],
Tuple[Tensor], None]:
"""Rotate boxes with points (optional) with the given angle or rotation
matrix.
Args:
angle (Tensor or np.ndarray or float): Rotation angle or rotation
matrix.
points (Tensor or np.ndarray or :obj:``, optional):
Points to rotate. Defaults to None.
Returns:
tuple or None: When ``points`` is None, the function returns None,
otherwise it returns the rotated points and the rotation matrix
``rot_mat_T``.
"""
pass
@abstractmethod
def flip(
self,
bev_direction: str = 'horizontal',
points: Optional[Union[Tensor, np.ndarray, ]] = None
) -> Union[Tensor, np.ndarray, None]:
"""Flip the boxes in BEV along given BEV direction.
Args:
bev_direction (str): Direction by which to flip. Can be chosen from
'horizontal' and 'vertical'. Defaults to 'horizontal'.
points (Tensor or np.ndarray or :obj:``, optional):
Points to flip. Defaults to None.
Returns:
Tensor or np.ndarray or :obj:`` or None: When ``points``
is None, the function returns None, otherwise it returns the
flipped points.
"""
pass
def translate(self, trans_vector: Union[Tensor, np.ndarray]) -> None:
"""Translate boxes with the given translation vector.
Args:
trans_vector (Tensor or np.ndarray): Translation vector of size
1x3.
"""
if not isinstance(trans_vector, Tensor):
trans_vector = self.tensor.new_tensor(trans_vector)
self.tensor[:, :3] += trans_vector
def in_range_3d(
self, box_range: Union[Tensor, np.ndarray,
Sequence[float]]) -> Tensor:
"""Check whether the boxes are in the given range.
Args:
box_range (Tensor or np.ndarray or Sequence[float]): The range of
box (x_min, y_min, z_min, x_max, y_max, z_max).
Note:
In the original implementation of SECOND, checking whether a box in
the range checks whether the points are in a convex polygon, we try
to reduce the burden for simpler cases.
Returns:
Tensor: A binary vector indicating whether each point is inside the
reference range.
"""
in_range_flags = ((self.tensor[:, 0] > box_range[0])
& (self.tensor[:, 1] > box_range[1])
& (self.tensor[:, 2] > box_range[2])
& (self.tensor[:, 0] < box_range[3])
& (self.tensor[:, 1] < box_range[4])
& (self.tensor[:, 2] < box_range[5]))
return in_range_flags
@abstractmethod
def convert_to(self,
dst: int,
rt_mat: Optional[Union[Tensor, np.ndarray]] = None,
correct_yaw: bool = False) -> 'BaseInstance3DBoxes':
"""Convert self to ``dst`` mode.
Args:
dst (int): The target Box mode.
rt_mat (Tensor or np.ndarray, optional): The rotation and
translation matrix between different coordinates.
Defaults to None. The conversion from ``src`` coordinates to
``dst`` coordinates usually comes along the change of sensors,
e.g., from camera to LiDAR. This requires a transformation
matrix.
correct_yaw (bool): Whether to convert the yaw angle to the target
coordinate. Defaults to False.
Returns:
:obj:`BaseInstance3DBoxes`: The converted box of the same type in
the ``dst`` mode.
"""
pass
def scale(self, scale_factor: float) -> None:
"""Scale the box with horizontal and vertical scaling factors.
Args:
scale_factors (float): Scale factors to scale the boxes.
"""
self.tensor[:, :6] *= scale_factor
self.tensor[:, 7:] *= scale_factor # velocity
def nonempty(self, threshold: float = 0.0) -> Tensor:
"""Find boxes that are non-empty.
A box is considered empty if either of its side is no larger than
threshold.
Args:
threshold (float): The threshold of minimal sizes. Defaults to 0.0.
Returns:
Tensor: A binary vector which represents whether each box is empty
(False) or non-empty (True).
"""
box = self.tensor
size_x = box[..., 3]
size_y = box[..., 4]
size_z = box[..., 5]
keep = ((size_x > threshold)
& (size_y > threshold) & (size_z > threshold))
return keep
def __getitem__(
self, item: Union[int, slice, np.ndarray,
Tensor]) -> 'BaseInstance3DBoxes':
"""
Args:
item (int or slice or np.ndarray or Tensor): Index of boxes.
Note:
The following usage are allowed:
1. `new_boxes = boxes[3]`: Return a `Boxes` that contains only one
box.
2. `new_boxes = boxes[2:10]`: Return a slice of boxes.
3. `new_boxes = boxes[vector]`: Where vector is a
torch.BoolTensor with `length = len(boxes)`. Nonzero elements in
the vector will be selected.
Note that the returned Boxes might share storage with this Boxes,
subject to PyTorch's indexing semantics.
Returns:
:obj:`BaseInstance3DBoxes`: A new object of
:class:`BaseInstance3DBoxes` after indexing.
"""
original_type = type(self)
if isinstance(item, int):
return original_type(self.tensor[item].view(1, -1),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
b = self.tensor[item]
assert b.dim() == 2, \
f'Indexing on Boxes with {item} failed to return a matrix!'
return original_type(b, box_dim=self.box_dim, with_yaw=self.with_yaw)
def __len__(self) -> int:
"""int: Number of boxes in the current object."""
return self.tensor.shape[0]
def __repr__(self) -> str:
"""str: Return a string that describes the object."""
return self.__class__.__name__ + '(\n ' + str(self.tensor) + ')'
@classmethod
def cat(cls, boxes_list: Sequence['BaseInstance3DBoxes']
) -> 'BaseInstance3DBoxes':
"""Concatenate a list of Boxes into a single Boxes.
Args:
boxes_list (Sequence[:obj:`BaseInstance3DBoxes`]): List of boxes.
Returns:
:obj:`BaseInstance3DBoxes`: The concatenated boxes.
"""
assert isinstance(boxes_list, (list, tuple))
if len(boxes_list) == 0:
return cls(torch.empty(0))
assert all(isinstance(box, cls) for box in boxes_list)
# use torch.cat (v.s. layers.cat)
# so the returned boxes never share storage with input
cat_boxes = cls(torch.cat([b.tensor for b in boxes_list], dim=0),
box_dim=boxes_list[0].box_dim,
with_yaw=boxes_list[0].with_yaw)
return cat_boxes
def numpy(self) -> np.ndarray:
"""Reload ``numpy`` from self.tensor."""
return self.tensor.numpy()
def to(self, device: Union[str, torch.device], *args,
**kwargs) -> 'BaseInstance3DBoxes':
"""Convert current boxes to a specific device.
Args:
device (str or :obj:`torch.device`): The name of the device.
Returns:
:obj:`BaseInstance3DBoxes`: A new boxes object on the specific
device.
"""
original_type = type(self)
return original_type(self.tensor.to(device, *args, **kwargs),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
def cpu(self) -> 'BaseInstance3DBoxes':
"""Convert current boxes to cpu device.
Returns:
:obj:`BaseInstance3DBoxes`: A new boxes object on the cpu device.
"""
original_type = type(self)
return original_type(self.tensor.cpu(),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
def cuda(self, *args, **kwargs) -> 'BaseInstance3DBoxes':
"""Convert current boxes to cuda device.
Returns:
:obj:`BaseInstance3DBoxes`: A new boxes object on the cuda device.
"""
original_type = type(self)
return original_type(self.tensor.cuda(*args, **kwargs),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
def clone(self) -> 'BaseInstance3DBoxes':
"""Clone the boxes.
Returns:
:obj:`BaseInstance3DBoxes`: Box object with the same properties as
self.
"""
original_type = type(self)
return original_type(self.tensor.clone(),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
def detach(self) -> 'BaseInstance3DBoxes':
"""Detach the boxes.
Returns:
:obj:`BaseInstance3DBoxes`: Box object with the same properties as
self.
"""
original_type = type(self)
return original_type(self.tensor.detach(),
box_dim=self.box_dim,
with_yaw=self.with_yaw)
@property
def device(self) -> torch.device:
"""torch.device: The device of the boxes are on."""
return self.tensor.device
def __iter__(self) -> Iterator[Tensor]:
"""Yield a box as a Tensor at a time.
Returns:
Iterator[Tensor]: A box of shape (box_dim, ).
"""
yield from self.tensor
@classmethod
def height_overlaps(cls, boxes1: 'BaseInstance3DBoxes',
boxes2: 'BaseInstance3DBoxes') -> Tensor:
"""Calculate height overlaps of two boxes.
Note:
This function calculates the height overlaps between ``boxes1`` and
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
Args:
boxes1 (:obj:`BaseInstance3DBoxes`): Boxes 1 contain N boxes.
boxes2 (:obj:`BaseInstance3DBoxes`): Boxes 2 contain M boxes.
Returns:
Tensor: Calculated height overlap of the boxes.
"""
assert isinstance(boxes1, BaseInstance3DBoxes)
assert isinstance(boxes2, BaseInstance3DBoxes)
assert type(boxes1) == type(boxes2), \
'"boxes1" and "boxes2" should be in the same type, ' \
f'but got {type(boxes1)} and {type(boxes2)}.'
boxes1_top_height = boxes1.top_height.view(-1, 1)
boxes1_bottom_height = boxes1.bottom_height.view(-1, 1)
boxes2_top_height = boxes2.top_height.view(1, -1)
boxes2_bottom_height = boxes2.bottom_height.view(1, -1)
heighest_of_bottom = torch.max(boxes1_bottom_height,
boxes2_bottom_height)
lowest_of_top = torch.min(boxes1_top_height, boxes2_top_height)
overlaps_h = torch.clamp(lowest_of_top - heighest_of_bottom, min=0)
return overlaps_h
def new_box(
self, data: Union[Tensor, np.ndarray, Sequence[Sequence[float]]]
) -> 'BaseInstance3DBoxes':
"""Create a new box object with data.
The new box and its tensor has the similar properties as self and
self.tensor, respectively.
Args:
data (Tensor or np.ndarray or Sequence[Sequence[float]]): Data to
be copied.
Returns:
:obj:`BaseInstance3DBoxes`: A new bbox object with ``data``, the
object's other properties are similar to ``self``.
"""
new_tensor = self.tensor.new_tensor(data) \
if not isinstance(data, Tensor) else data.to(self.device)
original_type = type(self)
return original_type(new_tensor,
box_dim=self.box_dim,
with_yaw=self.with_yaw)
class EulerInstance3DBoxes(BaseInstance3DBoxes):
"""3D boxes with 1-D orientation represented by three Euler angles.
See https://en.wikipedia.org/wiki/Euler_angles for
regarding the definition of Euler angles.
Attributes:
tensor (torch.Tensor): Float matrix of N x box_dim.
box_dim (int): Integer indicates the dimension of a box
Each row is (x, y, z, x_size, y_size, z_size, alpha, beta, gamma).
"""
def __init__(self, tensor, box_dim=9, origin=(0.5, 0.5, 0.5)):
if isinstance(tensor, torch.Tensor):
device = tensor.device
else:
device = torch.device('cpu')
tensor = torch.as_tensor(tensor, dtype=torch.float32, device=device)
if tensor.numel() == 0:
# Use reshape, so we don't end up creating a new tensor that
# does not depend on the inputs (and consequently confuses jit)
tensor = tensor.reshape((0, box_dim)).to(dtype=torch.float32,
device=device)
assert tensor.dim() == 2 and tensor.size(-1) == box_dim, tensor.size()
if tensor.shape[-1] == 6:
# If the dimension of boxes is 6, we expand box_dim by padding
# (0, 0, 0) as a fake euler angle.
assert box_dim == 6
fake_rot = tensor.new_zeros(tensor.shape[0], 3)
tensor = torch.cat((tensor, fake_rot), dim=-1)
self.box_dim = box_dim + 3
elif tensor.shape[-1] == 7:
assert box_dim == 7
fake_euler = tensor.new_zeros(tensor.shape[0], 2)
tensor = torch.cat((tensor, fake_euler), dim=-1)
self.box_dim = box_dim + 2
else:
assert tensor.shape[-1] == 9
self.box_dim = box_dim
self.tensor = tensor.clone()
self.origin = origin
if origin != (0.5, 0.5, 0.5):
dst = self.tensor.new_tensor((0.5, 0.5, 0.5))
src = self.tensor.new_tensor(origin)
self.tensor[:, :3] += self.tensor[:, 3:6] * (dst - src)
def get_corners(self, tensor1):
"""torch.Tensor: Coordinates of corners of all the boxes
in shape (N, 8, 3).
Convert the boxes to corners in clockwise order, in form of
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
.. code-block:: none
up z
front y ^
/ |
/ |
(x0, y1, z1) + ----------- + (x1, y1, z1)
/| / |
/ | / |
(x0, y0, z1) + ----------- + + (x1, y1, z0)
| / . | /
| / origin | /
(x0, y0, z0) + ----------- + --------> right x
(x1, y0, z0)
"""
if tensor1.numel() == 0:
return torch.empty([0, 8, 3], device=tensor1.device)
dims = tensor1[:, 3:6]
corners_norm = torch.from_numpy(
np.stack(np.unravel_index(np.arange(8), [2] * 3),
axis=1)).to(device=dims.device, dtype=dims.dtype)
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
# use relative origin
assert self.origin == (0.5, 0.5, 0.5), \
'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
corners_norm = corners_norm - dims.new_tensor(self.origin)
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
# rotate
corners = rotation_3d_in_euler(corners, tensor1[:, 6:])
corners += tensor1[:, :3].view(-1, 1, 3)
return corners
@classmethod
def overlaps(cls, boxes1, boxes2, mode='iou', eps=1e-4):
"""Calculate 3D overlaps of two boxes.
Note:
This function calculates the overlaps between ``boxes1`` and
``boxes2``, ``boxes1`` and ``boxes2`` should be in the same type.
Args:
boxes1 (:obj:`EulerInstance3DBoxes`): Boxes 1 contain N boxes.
boxes2 (:obj:`EulerInstance3DBoxes`): Boxes 2 contain M boxes.
mode (str): Mode of iou calculation. Defaults to 'iou'.
eps (bool): Epsilon. Defaults to 1e-4.
Returns:
torch.Tensor: Calculated 3D overlaps of the boxes.
"""
assert isinstance(boxes1, EulerInstance3DBoxes)
assert isinstance(boxes2, EulerInstance3DBoxes)
assert type(boxes1) == type(boxes2), '"boxes1" and "boxes2" should' \
f'be in the same type, got {type(boxes1)} and {type(boxes2)}.'
assert mode in ['iou']
rows = len(boxes1)
cols = len(boxes2)
if rows * cols == 0:
return boxes1.tensor.new(rows, cols)
corners1 = boxes1.corners
corners2 = boxes2.corners
_, iou3d = box3d_overlap(corners1, corners2, eps=eps)
return iou3d
@property
def gravity_center(self):
"""torch.Tensor: A tensor with center of each box in shape (N, 3)."""
return self.tensor[:, :3]
@property
def corners(self):
"""torch.Tensor: Coordinates of corners of all the boxes
in shape (N, 8, 3).
Convert the boxes to corners in clockwise order, in form of
``(x0y0z0, x0y0z1, x0y1z1, x0y1z0, x1y0z0, x1y0z1, x1y1z1, x1y1z0)``
.. code-block:: none
up z
front y ^
/ |
/ |
(x0, y1, z1) + ----------- + (x1, y1, z1)
/| / |
/ | / |
(x0, y0, z1) + ----------- + + (x1, y1, z0)
| / . | /
| / origin | /
(x0, y0, z0) + ----------- + --------> right x
(x1, y0, z0)
"""
if self.tensor.numel() == 0:
return torch.empty([0, 8, 3], device=self.tensor.device)
dims = self.dims
corners_norm = torch.from_numpy(
np.stack(np.unravel_index(np.arange(8), [2] * 3),
axis=1)).to(device=dims.device, dtype=dims.dtype)
corners_norm = corners_norm[[0, 1, 3, 2, 4, 5, 7, 6]]
# use relative origin
assert self.origin == (0.5, 0.5, 0.5), \
'self.origin != (0.5, 0.5, 0.5) needs to be checked!'
corners_norm = corners_norm - dims.new_tensor(self.origin)
corners = dims.view([-1, 1, 3]) * corners_norm.reshape([1, 8, 3])
# rotate
corners = rotation_3d_in_euler(corners, self.tensor[:, 6:])
corners += self.tensor[:, :3].view(-1, 1, 3)
return corners
def transform(self, matrix):
if self.tensor.shape[0] == 0:
return
if not isinstance(matrix, torch.Tensor):
matrix = self.tensor.new_tensor(matrix)
points = self.tensor[:, :3]
constant = points.new_ones(points.shape[0], 1)
points_extend = torch.concat([points, constant], dim=-1)
points_trans = torch.matmul(points_extend, matrix.transpose(-2,
-1))[:, :3]
size = self.tensor[:, 3:6]
# angle_delta = matrix_to_euler_angles(matrix[:3,:3], 'ZXY')
# angle = self.tensor[:,6:] + angle_delta
ori_matrix = euler_angles_to_matrix(self.tensor[:, 6:], 'ZXY')
rot_matrix = matrix[:3, :3].expand_as(ori_matrix)
final = torch.bmm(rot_matrix, ori_matrix)
angle = matrix_to_euler_angles(final, 'ZXY')
self.tensor = torch.cat([points_trans, size, angle], dim=-1)
def scale(self, scale_factor: float) -> None:
"""Scale the box with horizontal and vertical scaling factors.
Args:
scale_factors (float): Scale factors to scale the boxes.
"""
self.tensor[:, :6] *= scale_factor
def rotate(self, angle, points=None):
"""Rotate boxes with points (optional) with the given angle or rotation
matrix.
Args:
angle (float | torch.Tensor | np.ndarray):
Rotation angle or rotation matrix.
points (torch.Tensor | np.ndarray | :obj:``, optional):
Points to rotate. Defaults to None.
Returns:
tuple or None: When ``points`` is None, the function returns
None, otherwise it returns the rotated points and the
rotation matrix ``rot_mat_T``.
"""
if not isinstance(angle, torch.Tensor):
angle = self.tensor.new_tensor(angle)
if angle.numel() == 1: # only given yaw angle for rotation
angle = self.tensor.new_tensor([angle, 0., 0.])
rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
elif angle.numel() == 3:
rot_matrix = euler_angles_to_matrix(angle, 'ZXY')
elif angle.shape == torch.Size([3, 3]):
rot_matrix = angle
else:
raise NotImplementedError
rot_mat_T = rot_matrix.T
transform_matrix = torch.eye(4)
transform_matrix[:3, :3] = rot_matrix
self.transform(transform_matrix)
if points is not None:
if isinstance(points, torch.Tensor):
points[:, :3] = points[:, :3] @ rot_mat_T
elif isinstance(points, np.ndarray):
rot_mat_T = rot_mat_T.cpu().numpy()
points[:, :3] = np.dot(points[:, :3], rot_mat_T)
elif isinstance(points, ):
points.rotate(rot_mat_T)
else:
raise ValueError
return points, rot_mat_T
else:
return rot_mat_T
def flip(self, direction='X'):
"""Flip the boxes along the corresponding axis.
Args:
direction (str, optional): Flip axis. Defaults to 'X'.
"""
assert direction in ['X', 'Y', 'Z']
if direction == 'X':
self.tensor[:, 0] = -self.tensor[:, 0]
self.tensor[:, 6] = -self.tensor[:, 6] + np.pi
self.tensor[:, 8] = -self.tensor[:, 8]
elif direction == 'Y':
self.tensor[:, 1] = -self.tensor[:, 1]
self.tensor[:, 6] = -self.tensor[:, 6]
self.tensor[:, 7] = -self.tensor[:, 7] + np.pi
elif direction == 'Z':
self.tensor[:, 2] = -self.tensor[:, 2]
self.tensor[:, 7] = -self.tensor[:, 7]
self.tensor[:, 8] = -self.tensor[:, 8] + np.pi
def rotation_3d_in_euler(points, angles, return_mat=False, clockwise=False):
"""Rotate points by angles according to axis.
Args:
points (np.ndarray | torch.Tensor | list | tuple ):
Points of shape (N, M, 3).
angles (np.ndarray | torch.Tensor | list | tuple):
Vector of angles in shape (N, 3)
return_mat: Whether or not return the rotation matrix (transposed).
Defaults to False.
clockwise: Whether the rotation is clockwise. Defaults to False.
Raises:
ValueError: when the axis is not in range [0, 1, 2], it will
raise value error.
Returns:
(torch.Tensor | np.ndarray): Rotated points in shape (N, M, 3).
"""
batch_free = len(points.shape) == 2
if batch_free:
points = points[None]
if len(angles.shape) == 1:
angles = angles.expand(points.shape[:1] + (3, ))
# angles = torch.full(points.shape[:1], angles)
assert len(points.shape) == 3 and len(angles.shape) == 2 \
and points.shape[0] == angles.shape[0], f'Incorrect shape of points ' \
f'angles: {points.shape}, {angles.shape}'
assert points.shape[-1] in [2, 3], \
f'Points size should be 2 or 3 instead of {points.shape[-1]}'
rot_mat_T = euler_angles_to_matrix(angles, 'ZXY') # N, 3,3
rot_mat_T = rot_mat_T.transpose(-2, -1)
if clockwise:
raise NotImplementedError('clockwise')
if points.shape[0] == 0:
points_new = points
else:
points_new = torch.bmm(points, rot_mat_T)
if batch_free:
points_new = points_new.squeeze(0)
if return_mat:
if batch_free:
rot_mat_T = rot_mat_T.squeeze(0)
return points_new, rot_mat_T
else:
return points_new
def _axis_angle_rotation(axis: str, angle: np.ndarray) -> np.ndarray:
"""Return the rotation matrices for one of the rotations about an axis of
which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = np.cos(angle)
sin = np.sin(angle)
one = np.ones_like(angle)
zero = np.zeros_like(angle)
if axis == 'X':
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == 'Y':
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == 'Z':
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError('letter must be either X, Y or Z.')
return np.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def is_inside_box(points, center, size, rotation_mat):
"""Check if points are inside a 3D bounding box.
Args:
points: 3D points, numpy array of shape (n, 3).
center: center of the box, numpy array of shape (3, ).
size: size of the box, numpy array of shape (3, ).
rotation_mat: rotation matrix of the box,
numpy array of shape (3, 3).
Returns:
Boolean array of shape (n, )
indicating if each point is inside the box.
"""
assert points.shape[1] == 3, 'points should be of shape (n, 3)'
points = np.array(points) # n,3
center = np.array(center) # n, 3
size = np.array(size) # n, 3
rotation_mat = np.array(rotation_mat)
assert rotation_mat.shape == (
3,
3,
), f'R should be shape (3,3), but got {rotation_mat.shape}'
pcd_local = (points - center) @ rotation_mat # n, 3
pcd_local = pcd_local / size * 2.0 # scale to [-1, 1] # n, 3
pcd_local = abs(pcd_local)
return ((pcd_local[:, 0] <= 1)
& (pcd_local[:, 1] <= 1)
& (pcd_local[:, 2] <= 1))
def normalize_box(scene_pcd, embodied_scan_bbox):
"""Find the smallest 6 DoF box that covers these points which 9 DoF box
covers.
Args:
scene_pcd (Tensor / ndarray):
(..., 3)
embodied_scan_bbox (Tensor / ndarray):
(9,) 9 DoF box
Returns:
Tensor: Transformed 3D box of shape (N, 8, 3).
"""
bbox = np.array(embodied_scan_bbox)
orientation = euler_to_matrix_np(bbox[np.newaxis, 6:])[0]
position = np.array(bbox[:3])
size = np.array(bbox[3:6])
obj_mask = np.array(
is_inside_box(scene_pcd[:, :3], position, size, orientation),
dtype=bool,
)
obj_pc = scene_pcd[obj_mask]
# resume the same if there's None
if obj_pc.shape[0] < 1:
return embodied_scan_bbox[:6]
xmin = np.min(obj_pc[:, 0])
ymin = np.min(obj_pc[:, 1])
zmin = np.min(obj_pc[:, 2])
xmax = np.max(obj_pc[:, 0])
ymax = np.max(obj_pc[:, 1])
zmax = np.max(obj_pc[:, 2])
bbox = np.array([
(xmin + xmax) / 2,
(ymin + ymax) / 2,
(zmin + zmax) / 2,
xmax - xmin,
ymax - ymin,
zmax - zmin,
])
return bbox
def from_9dof_to_6dof(pcd_data, bbox_):
# that's a kind of loss of information, so we don't recommend
return normalize_box(pcd_data, bbox_)
def bbox_to_corners(centers, sizes, rot_mat: torch.Tensor) -> torch.Tensor:
"""Transform bbox parameters to the 8 corners.
Args:
bbox (Tensor): 3D box of shape (N, 6) or (N, 7) or (N, 9).
Returns:
Tensor: Transformed 3D box of shape (N, 8, 3).
"""
device = centers.device
use_batch = False
if len(centers.shape) == 3:
use_batch = True
batch_size, n_proposals = centers.shape[0], centers.shape[1]
centers = centers.reshape(-1, 3)
sizes = sizes.reshape(-1, 3)
rot_mat = rot_mat.reshape(-1, 3, 3)
n_box = centers.shape[0]
if use_batch:
assert n_box == batch_size * n_proposals
centers = centers.unsqueeze(1).repeat(1, 8, 1) # shape (N, 8, 3)
half_sizes = sizes.unsqueeze(1).repeat(1, 8, 1) / 2 # shape (N, 8, 3)
eight_corners_x = (torch.tensor([1, 1, 1, 1, -1, -1, -1, -1],
device=device).unsqueeze(0).repeat(
n_box, 1)) # shape (N, 8)
eight_corners_y = (torch.tensor([1, 1, -1, -1, 1, 1, -1, -1],
device=device).unsqueeze(0).repeat(
n_box, 1)) # shape (N, 8)
eight_corners_z = (torch.tensor([1, -1, -1, 1, 1, -1, -1, 1],
device=device).unsqueeze(0).repeat(
n_box, 1)) # shape (N, 8)
eight_corners = torch.stack(
(eight_corners_x, eight_corners_y, eight_corners_z),
dim=-1) # shape (N, 8, 3)
eight_corners = eight_corners * half_sizes # shape (N, 8, 3)
# rot_mat: (N, 3, 3), eight_corners: (N, 8, 3)
rotated_corners = torch.matmul(eight_corners,
rot_mat.transpose(1, 2)) # shape (N, 8, 3)
res = centers + rotated_corners
if use_batch:
res = res.reshape(batch_size, n_proposals, 8, 3)
return res
def euler_iou3d_corners(boxes1, boxes2):
rows = boxes1.shape[0]
cols = boxes2.shape[0]
if rows * cols == 0:
return boxes1.new(rows, cols)
_, iou3d = box3d_overlap(boxes1, boxes2)
return iou3d
def euler_iou3d_bbox(center1, size1, rot1, center2, size2, rot2):
"""Calculate the 3D IoU between two grounps of 9DOF bounding boxes.
Args:
center1 (Tensor): (n, cx, cy, cz) of grounp1.
size1 (Tensor): (n, l, w, h) of grounp1.
rot1 (Tensor): rot matrix of grounp1.
center1 (Tensor): (m, cx, cy, cz) of grounp2.
size1 (Tensor): (m, l, w, h) of grounp2.
rot1 (Tensor): rot matrix of grounp2.
Returns:
numpy.ndarray: (n, m) the 3D IoU.
"""
if torch.cuda.is_available():
center1 = center1.cuda()
size1 = size1.cuda()
rot1 = rot1.cuda()
center2 = center2.cuda()
size2 = size2.cuda()
rot2 = rot2.cuda()
corners1 = bbox_to_corners(center1, size1, rot1)
corners2 = bbox_to_corners(center2, size2, rot2)
result = euler_iou3d_corners(corners1, corners2)
if torch.cuda.is_available():
result = result.detach().cpu()
return result.numpy()
def index_box(boxes: List[torch.tensor],
indices: Union[List[torch.tensor], torch.tensor])\
-> Union[List[torch.tensor], torch.tensor]:
"""Convert a grounp of bounding boxes represented in [center, size, rot]
format to 9 DoF format.
Args:
box (list/tuple, tensor): boxes in a grounp.
Returns:
Tensor : 9 DoF format. (num,9)
"""
if isinstance(boxes, (list, tuple)):
return [index_box(box, indices) for box in boxes]
else:
return boxes[indices]
def to_9dof_box(box: List[torch.tensor]):
"""Convert a grounp of bounding boxes represented in [center, size, rot]
format to 9 DoF format.
Args:
box (list/tuple, tensor): boxes in a grounp.
Returns:
Tensor : 9 DoF format. (num,9)
"""
return EulerInstance3DBoxes(box, origin=(0.5, 0.5, 0.5))
|